scholarly journals Formation of humoral and cellular immunity to measles vaccine in adults

2020 ◽  
Vol 10 (1) ◽  
pp. 137-144
Author(s):  
A. P. Toptygina ◽  
Yu. Yu. Andreev ◽  
M. A. Smerdova ◽  
A. Yu. Zetkin ◽  
T. G. Klykova

Despite adherence to the policy of mass measles vaccination in the majority of countries, this infection still remains far from being fully eradicated. Measles outbreaks are reported worldwide, when the vast majority of cases are recorded in subjects of 18—35 years of age. Studies on assessing measles IgG antibody level in different regions of Russia reveal increased percentage of measles seronegative subjects among young adults. Current study was aimed at investigating formation of humoral and cellular immunity after measles vaccination in seronegative adults aged 18 to 30 years old. There were enrolled 50 measles seronegative healthy volunteers aged 18 to 30 years old. Level of anti-measles IgM and IgG antibodies was measured by ELISA (Vector-Best, Russia). Subclasses of measles specific IgG antibodies were analyzed by ELISA, by replacing IgG conjugate for IgG1, IgG2, IgG3, IgG4 conjugates, whereas measles specific IgA antibodies were estimated by ELISA with IgA conjugate (Polygnost, Russia) at a concentration of 1 μg/ml. Antibody avidity was assessed by ELISA (Euroimmun, Germany). Cell-mediated measles immunity was estimated by CD107a surface expression on CD8hi T cell subset stimulated by measles virus-derived antigens. A specific cellular response to measles antigens before vaccination was detected in 50% of examined subjects, whereas 40% samples showed no signs of cellular immune response, with 10% of remaining cases described as equivocal. It was found that 6 weeks after vaccination all vaccinated subjects developed measles specific IgG antibodies at protective level reaching 1.33 (0.85—1.82) IU/ml [Me (LQ—UQ)]. Anti-measles IgA antibodies were of 0.655 (0.423—1.208) IU/ml [Me (LQ—UQ)]. However, no measles specific IgM antibodies were detected 6 weeks after vaccination. In addition, primary type of immune response (dominant low-avidity anti-measles antibodies IgG3 subclass) to measles vaccination was observed in 24 out of 50 subjects, whereas 26 subjects developed secondary type of immune response (high-avidity anti-measles antibodies dominated by IgG1 subclass). A measles specific cellular immune response was observed in 47 of the 50 examined subjects, and in 3 volunteers it was equivocal. Further analysis revealed a cohort of subjects who were not vaccinated against measles (18 subjects), although 60% of them provided medical record on previous dual measles vaccination occurred in childhood. Another cohort consisted of subjects who had medical record of measles vaccination in childhood (32 subjects), but lost protective measles antibodies produced by plasma cells (23 subjects), and memory T cells (3 subjects), or measles antibodies and memory B cells (6 subjects) over time. Such pattern evidences that measles-specific cellular and humoral arms immune responses were developed and maintained independently of each other.

1993 ◽  
Vol 35 (4) ◽  
pp. 361-365 ◽  
Author(s):  
Cláudio L. Rossi ◽  
Emilia E. H. Takahashi ◽  
Cláudia D. Partel ◽  
Lívia G.V.L. Teodoro ◽  
Luiz J. da Silva

Total serum IgE, and Strongyloides - specific IgG and IgA antibodies were studied in 27 patients with parasitologically proven strongyloidiasis. Clinical manifestations in this case series were investigated by a restrospective study of the patient's records. Total serum IgE levels were elevated (greater than 250 IU/ml) in 59% of the patients (mean concentration = 1364 IU/ml). Parasite - specific IgG and IgA antibodies were detected by ELISA in the serum of 23 (85.2%) and 21 (77.8%) patients, respectively. Elevated serum IgE and clinical manifestations were not useful indexes of the presence of strongyloidiasis. On the other hand, our results support the view that serologic tests, particularly ELISA for detecting Strongyloides - specific IgG antibodies, can be usefully exploited for diagnostic purposes in strongyloidiasis.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Caitlin E. Mullarkey ◽  
Mark J. Bailey ◽  
Diana A. Golubeva ◽  
Gene S. Tan ◽  
Raffael Nachbagauer ◽  
...  

ABSTRACTBroadly neutralizing antibodies that recognize the conserved hemagglutinin (HA) stalk have emerged as exciting new biotherapeutic tools to combat seasonal and pandemic influenza viruses. Our general understanding of the mechanisms by which stalk-specific antibodies achieve protection is rapidly evolving. It has recently been demonstrated that broadly neutralizing HA stalk-specific IgG antibodies require Fc-Fcγ receptor (FcγR) interactions for optimal protectionin vivo. Here we examine the neutrophil effector functions induced by stalk-specific antibodies. As the most abundant subset of blood leukocytes, neutrophils represent a critical innate effector cell population and serve an instrumental role in orchestrating downstream adaptive responses to influenza virus infection. Yet, the interplay of HA stalk-specific IgG, Fc-FcγR engagement, and neutrophils has remained largely uncharacterized. Using anin vitroassay to detect the production of reactive oxygen species (ROS), we show that human and mouse monoclonal HA stalk-specific IgG antibodies are able to induce the production of ROS by neutrophils, while HA head-specific antibodies do not. Furthermore, our results indicate that the production of ROS is dependent on Fc receptor (FcR) engagement and phagocytosis. We went on to assess the ability of monoclonal HA stalk-specific IgA antibodies to induce ROS. Consistent with our findings for monoclonal IgGs, only HA stalk-specific IgA antibodies elicited ROS production by neutrophils. This induction is dependent on the engagement of FcαR1. Taken together, our findings describe a novel FcR-dependent effector function induced by HA stalk-specific IgG and IgA antibodies, and importantly, our studies shed light on the mechanisms by which HA stalk-specific antibodies achieve protection.IMPORTANCEThe present study provides evidence that broadly neutralizing HA stalk-specific antibodies induce downstream Fc-mediated neutrophil effector functions. In addition to their ability to neutralize, this class of antibodies has been shown to rely on Fc-Fc receptor interactions for optimal protectionin vivo. Curiously, neutralizing antibodies that bind the HA head domain do not require such interactions. Our findings build on these previous observations and provide a more complete picture of the relationship between stalk-specific antibodies and cells of the innate immune compartment. Furthermore, our data suggest that the ability of HA stalk-specific antibodies to mediate Fc-Fc receptor engagement is epitope dependent. Overall, this work will inform the rational design of improved influenza virus vaccines and therapeutics.


2021 ◽  
Author(s):  
Sawsan S Alamri ◽  
Khalid A Alluhaybi ◽  
Rowa Y Alhabbab ◽  
Abdullah Algaissi ◽  
Sarah Almahboub ◽  
...  

AbstractThe ongoing global pandemic of Coronavirus Disease 2019 (COVID-19) calls for an urgent development of effective and safe prophylactic and therapeutic measures. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein is a major immunogenic and protective protein, and plays a crucial role in viral pathogenesis. In this study, we successfully constructed a synthetic codon-optimized DNA-based vaccine as a countermeasure against SARS-CoV-2; denoted as VIU-1005. The design was based on the synthesis of codon-optimized coding sequence for optimal mammalian expression of a consensus full-length S glycoprotein. The successful construction of the vaccine was confirmed by restriction digestion and sequencing, and the protein expression of the S protein was confirmed by western blot and immunofluorescence staining in mammalian cells. The immunogenicity of the vaccine was tested in two mouse models (BALB/c and C57BL/6J). Th1-skewed systemic S-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in both models four weeks post three injections with 100 μg of the VIU-1005 vaccine via intramuscular needle injection but not intradermal or subcutaneous routes. Importantly, such immunization induced long-lasting IgG response in mice that lasted for at least 6 months. Interestingly, using a needle-free system, we showed an enhanced immunogenicity of VIU-1005 in which lower doses such as 25-50 μg or less number of doses were able to elicit significantly high levels of Th1-biased systemic S-specific IgG antibodies and nAbs via intramuscular immunization compared to needle immunization. Compared to the intradermal needle injection which failed to induce any significant immune response, intradermal needle-free immunization elicited robust Th1-biased humoral response similar to that observed with intramuscular immunization. Furthermore, immunization with VIU-1005 induced potent S-specific cellular response as demonstrated by the significantly high levels of IFN-γ, TNF and IL-2 cytokines production in memory CD8+ and CD4+ T cells in BALB/c mice. Together, our results demonstrate that the synthetic VIU-1005 candidate DNA vaccine is highly immunogenic and capable of inducing long-lasting and Th1-skewed immune response in mice. Furthermore, we show that the use of needle-free system could enhance the immunogenicity and minimize doses needed to induce protective immunity in mice, supporting further preclinical and clinical testing of this candidate vaccine.


2020 ◽  
Vol 11 (17) ◽  
pp. 4488-4498
Author(s):  
Carlo Pifferi ◽  
Ane Ruiz-de-Angulo ◽  
David Goyard ◽  
Claire Tiertant ◽  
Nagore Sacristán ◽  
...  

A fully-synthetic anticancer vaccine candidate incorporating an hexadecavalent Tn antigen analogue display via oxime linkages induced tumor-specific IgG antibodies and cellular immune responses in mice coadministered with QS-21 as an adjuvant.


2021 ◽  
Author(s):  
Guy Shapira ◽  
Ramzia Abu Hamad ◽  
Chen Weiner ◽  
Nir Rainy ◽  
Reut Sorek-Abramovich ◽  
...  

Neutralizing antibodies targeting the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) block viral entry to host cells, preventing disease and further spread of the pathogen. The presence of SARS-CoV-2 antibodies in serum is a reliable indicator of infection, used epidemiologically to estimate the prevalence of infection and clinically as a measurement of an antigen-specific immune response. In this study, we analyzed serum Spike protein-specific IgG antibodies from 26,170 samples, including convalescent individuals who had coronavirus disease 2019 (COVID-19) and recipients of the BNT162b2 vaccine. We find distinct serological patterns in COVID-19 convalescent and vaccinated individuals, correlated with age and gender and the presence symptoms.


Author(s):  
Serena Marchi ◽  
Martina Monti ◽  
Simonetta Viviani ◽  
Edmond J Remarque ◽  
Susanna Esposito ◽  
...  

Abstract Background Despite efforts to increase coverage by two doses of measles vaccine in Italy, measles continues to circulate, with over 13 000 cases of disease since 2013. This study aimed to evaluate immunity to measles in Italian children and adolescents. Methods A total of 378 serum samples from subjects aged 9 months–18 years were collected in Northern, Central and Southern regions of Italy between 2012 and 2016. Specific IgG antibodies against measles were measured by a commercial ELISA kit. Results The frequency of IgG-positive samples ranged from 10.5% in infants under 1 year to 98.3% in children aged 6–7 years. The frequency of IgG was 72.2% in subjects aged 1–2 years, 85.6% in those aged 3–5 years and 88.3 and 86.8% in those aged 8–10 and 11–18 years, respectively. In Northern Italy, IgG prevalence was consistent with data on vaccination coverage, whereas some differences were observed in samples from subjects aged more than 8 years in Central and Southern Italy. Conclusions Our findings confirm that a large proportion of children and adolescents in Italy are still susceptible to measles. While data on first- and second-dose measles vaccination are essential, they are not sufficient to identify susceptible population cohorts to be targeted by vaccination.


2019 ◽  
Vol 9 (3-4) ◽  
pp. 607-611 ◽  
Author(s):  
M. A. Smerdova ◽  
A. P. Toptygina ◽  
Yu. Yu. Andreev ◽  
S. V. Sennikova ◽  
A. Yu. Zetkin ◽  
...  

An issue of eradicating measles and rubella virus-induced infections currently remains unresolved, despite existing effective methods for specific prophylaxis and WHO’s commitment to a mass vaccination policy. While improving epidemic situation, analysis of new challenges, such as measles incidence in adults, especially in adults vaccinated in childhood, is of particular interest. The aim of the study was to analyze serum measles and rubella virus-specific IgG antibodies in young healthy people and estimate antigen-specific cellular immune response in seronegative subjects. There were examined 100 healthy adults aged 18–30 years old. Level of serum specific IgG was measured by ELISA (Vector-Best, Russia). Antigen-specific cellular immune response was assessed by magnitude of surface CD107a expression on CD8hi T cells challenged by measles and rubella virus-derived antigens. It was found that average level of antibodies against rubella virus comprised 175.5 IU/ml, 49% of which recovered after rubella, 46% were vaccinated, whereas 5% subjects contained no virus-specific antibodies. In addition, mean level of anti-measles virus antibodies was below protective magnitude, among which 1% subjects recovered after measles, 31% displayed post-vaccination immunity, 55% subjects were seronegative, and 13% had equivocal levels of specific antibodies. Thus, 68% subjects were unprotected against measles virus based on the level of serum virus-specific antibodies. Moreover, 40 out of 68 subjects were vaccinated against measles in childhood. Additional screening adult subjects for intensity of measles and rubella virus-specific cellular immunity demonstrated that 57.37% of them contained peripheral blood CD8 T cells against measles virus and 59.01% — against rubella virus. Further analysis allowed to identify 4 subgroups displaying: 1) high level of virus-specific antibodies and T cells; 2) neither antibodies nor specific T-cells reaching as low as 20% of baseline group; 3) high antibody level combined with low amount of specific T cells; and 4) low antibody level combined with high level of specific T cells. thus, it may be assumed that cellular and humoral immune arms are maintained independently and being active for a long term after vaccination. Preserving a specific T-cell immunity seems to provide protection against infection, thereby accounting for the lack of measles manifestation in all seronegative subjects. 


MedChemComm ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Nisar A. Dangroo ◽  
Jasvinder Singh ◽  
Nidhi Gupta ◽  
Shashank Singh ◽  
Anapurna Kaul ◽  
...  

Herein we report the synthesis of α-santonin analogs, and identification of potent immunosuppressant molecules. In vivo investigation on BALB/c mice revealed that compound 4e suppresses both humoral and cellular immunity.


Sign in / Sign up

Export Citation Format

Share Document