Application of highly stable biochar catalysts for efficient pyrolysis of plastics: a readily accessible potential solution to a global waste crisis

2020 ◽  
Vol 4 (9) ◽  
pp. 4614-4624
Author(s):  
Chenxi Wang ◽  
Hanwu Lei ◽  
Moriko Qian ◽  
Erguang Huo ◽  
Yunfeng Zhao ◽  
...  

Biochar catalysts derived from corn stover and Douglas fir were employed for the catalytic pyrolysis of model low-density polyethylene (LDPE) and real waste plastics.

Author(s):  
Azubuike Francis Anene ◽  
Siw Bodil Fredriksen ◽  
Kai Arne Sætre ◽  
Lars -Andre Tokheim

Thermal and catalytic pyrolysis of virgin low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and mixtures of LDPE/PP were carried out in a 200 ml laboratory scale batch reactor at 460 °C in a nitrogen atmosphere. Thermogravimetric analysis (TGA) was carried out to study the thermal and catalytic degradation of the polymers at a heating rate of 10 °C/min. The amount of PP was varied in the LDPE/PP mixture to explore its effect on the reaction. In thermal degradation (TGA) of LDPE/PP blends, a lower decomposition temperature was observed for LDPE/PP mixtures compared to pure LDPE, indicating interaction between the two polymer types. In the presence of a catalyst (CAT-2), the degradation temperatures for the pure polymers were reduced. The TGA results were validated in a batch reactor using PP and LDPE respectively. Thermal cracking results showed that the oil product contains a significant amount of gasoline (C7 − C12) and diesel (C13 − C20) hydrocarbon fractions. The catalyst enhanced cracking at lower temperatures and narrowed the hydrocarbon distribution in the oil towards the gasoline range fraction (C7 – C12). The result suggests that the oil produced from catalytic pyrolysis of waste plastics has a potential as an alternative fuel.


Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121164
Author(s):  
Wei Luo ◽  
Zhongyi Fan ◽  
Jun Wan ◽  
Qing Hu ◽  
Hang Dong ◽  
...  

2020 ◽  
Vol 4 (7) ◽  
pp. 3687-3700
Author(s):  
Dengle Duan ◽  
Yayun Zhang ◽  
Hanwu Lei ◽  
Moriko Qian ◽  
Elmar Villota ◽  
...  

The catalytic co-pyrolysis of Douglas fir and low-density polyethylene with commercial activated carbon catalysts was investigated for the first time.


2010 ◽  
Vol 24 (8) ◽  
pp. 4231-4240 ◽  
Author(s):  
Nagi Insura ◽  
Jude A. Onwudili ◽  
Paul T. Williams

Sign in / Sign up

Export Citation Format

Share Document