scholarly journals Eco-energetic management of activated sludge derived from slaughterhouse wastewater treatment: pre-treatments for enhancing biogas production under anaerobic conditions

2020 ◽  
Vol 4 (10) ◽  
pp. 5072-5079
Author(s):  
Pablo Caballero ◽  
Cristina Ágabo-García ◽  
Rosario Solera ◽  
Juan Parrado ◽  
Montserrat Pérez

In this paper different pre-treatments (involving temperature, pressure and enzymatic processes) were applied to activated sludge from slaughterhouse wastewater treatment with the aim of improving biogas production in anaerobic processes.

Microbiology ◽  
2013 ◽  
Vol 82 (6) ◽  
pp. 690-697 ◽  
Author(s):  
Yu. V. Litti ◽  
V. K. Nekrasova ◽  
N. I. Kulikov ◽  
M. V. Siman’kova ◽  
A. N. Nozhevnikova

2006 ◽  
Vol 53 (12) ◽  
pp. 177-186 ◽  
Author(s):  
D. Bolzonella ◽  
P. Pavan ◽  
P. Battistoni ◽  
F. Cecchi

This paper deals with the performances obtained in full scale anaerobic digesters co-digesting waste activated sludge from biological nutrients removal wastewater treatment plants, together with different types of organic wastes (solid and liquid). Results showed that the biogas production can be increased from 4,000 to some 18,000 m3 per month when treating some 3–5 tons per day of organic municipal solid waste together with waste activated sludge. On the other hand, the specific biogas production was improved, passing from 0.3 to 0.5 m3 per kgVS fed the reactor, when treating liquid effluents from cheese factories. The addition of the co-substrates gave minimal increases in the organic loading rate while the hydraulic retention time remained constant. Further, the potentiality of the struvite crystallisation process for treating anaerobic supernatant rich in nitrogen and phosphorus was studied: 80% removal of phosphorus was observed in all the tested conditions. In conclusion, a possible layout is proposed for designing or up-grading wastewater treatment plants for biological nutrients removal process.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3175
Author(s):  
Maximilian Philipp ◽  
Khaoula Masmoudi Jabri ◽  
Johannes Wellmann ◽  
Hanene Akrout ◽  
Latifa Bousselmi ◽  
...  

Slaughterhouses produce a large amount of wastewater, therefore, with respect to the increasing water scarcity, slaughterhouse wastewater (SWW) recycling seems to be a desirable goal. The emerging challenges and opportunities for recycling and reuse have been examined here. The selection of a suitable process for SWW recycling is dependent on the characteristics of the wastewater, the available technology, and the legal requirements. SWW recycling is not operated at a large scale up to date, due to local legal sanitary requirements as well as challenges in technical implementation. Since SWW recycling with single-stage technologies is unlikely, combined processes are examined and evaluated within the scope of this publication. The process combination of dissolved air flotation (DAF) followed by membrane bioreactor (MBR) and, finally, reverse osmosis (RO) as a polishing step seems to be particularly promising. In this way, wastewater treatment for process water reuse could be achieved in theory, as well as in comparable laboratory experiments. Furthermore, it was calculated via the methane production potential that the entire energy demand of wastewater treatment could be covered if the organic fraction of the wastewater was used for biogas production.


2006 ◽  
Vol 54 (1) ◽  
pp. 237-245 ◽  
Author(s):  
T.R. Thomsen ◽  
C. Kragelund ◽  
P.H. Nielsen

Microcolony-forming bacteria closely related to the genus Aquaspirillum in the Betaproteobacteria were recently observed to be abundant in many nutrient removal wastewater treatment plants. The developed oligonucleotide probe, Aqs997, however, occasionally also targeted some filamentous bacteria in activated sludge samples when fluorescence in situ hybridization was performed. In this study, the identity, abundance, and ecophysiology of these Aqs997-positive filamentous bacteria were studied in detail. Most of the Aqs997-positive filamentous bacteria could morphologically be identified as either Eikelboom Type 1701, Type 0041/0675 or possibly Type 1851, all characterized by epiphytic growth. They were found in almost all 21 wastewater treatment plants investigated. Two morphotypes were found. Type A filaments, which seemed to be the same genotype as the microcolony-forming bacteria targeted by probe Aqs997.Type B filaments also hybridized with probe GNS941, specific for the Chloroflexi phylum, so the true identity remains unclear. Aqs997-positive filaments usually stained Gram-negative, but Gram-positive filaments were also found, stressing the difficulties in identifying bacteria from morphology and simple staining results. Studies on the ecophysiology by microautoradiography showed that Aqs997-positive filamentous bacteria did not consume acetate and glucose, while some took up butyrate, mannose, and certain amino acids. Most likely, some Aqs997-positive filamentous bacteria were able to perform full denitrification such as the Aqs997-positive microcolony-forming bacteria, and some were able to store polyhydroxyalkanoates under anaerobic conditions, potentially being glycogen accumulating organisms.


2008 ◽  
Vol 58 (8) ◽  
pp. 1547-1553 ◽  
Author(s):  
P. Phothilangka ◽  
M. A. Schoen ◽  
B. Wett

This paper presents benefits and potential drawbacks of thermal pre-hydrolysis of sewage sludge from an operator's prospective. The innovative continuous Thermo-Pressure-Hydrolysis Process (TDH) has been tested in full-scale at Zirl wastewater treatment plant (WWTP), Austria, and its influence on sludge digestion and dewatering has been evaluated. A mathematical plant-wide model with application of the IWA Activated Sludge Model No.1 (ASM1) and the Anaerobic Digestion Model No.1 (ADM1) has been used for a systematic comparison of both scenarios—operational plant performance with and without thermal pre-hydrolysis. The impacts of TDH pre-hydrolysis on biogas potential, dewatering performance and return load in terms of ammonia and inert organic compounds (Si) have been simulated by the calibrated model and are displayed by Sankey mass flow figures. Implementation of full scale TDH process provided higher anaerobic degradation efficiency with subsequent increased biogas production (+75–80%) from waste activated sludge (WAS). Both effects—enhanced degradation of organic matter and improved cake's solids content from 25.2 to 32.7% TSS—promise a reduction in sludge disposal costs of about 25%. However, increased ammonia release and generation of soluble inerts Si was observed when TDH process was introduced.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 51-55 ◽  
Author(s):  
Åsa Dillner Westlund ◽  
Eva Hagland ◽  
Maria Rothman

Three large wastewater treatment plants in the greater Stockholm area have experienced serious anaerobic digester foaming. Microscopic studies of the sludge from the foam phase showed a network of the filamentous organism Microthrix parvicella. The morphology of the long, coiled filament appeared to be affected by the anaerobic conditions where it became broken up into to shorter and thicker filaments. The operating strategy to prevent foam in the anaerobic digesters at these plants is to control the growth of M. parvicella in the activated sludge tanks by increasing the sludge load. Top installed stirrers and the addition of poly-aluminium salt have also been used to prevent foam formation.


Sign in / Sign up

Export Citation Format

Share Document