The fate of aluminium in (Na,Bi)TiO3-based ionic conductors

2020 ◽  
Vol 8 (35) ◽  
pp. 18188-18197
Author(s):  
Pedro B. Groszewicz ◽  
Leonie Koch ◽  
Sebastian Steiner ◽  
Azatuhi Ayrikyan ◽  
Kyle G. Webber ◽  
...  

The role of [AlTi–VO]˙ associated defects in ionic conduction in Al-doped (Na,Bi)TiO3 is clarified by a combination of impedance analysis, DFT calculations and NMR spectroscopy.

2019 ◽  
Vol 91 (11) ◽  
pp. 1797-1806
Author(s):  
Masaru Aniya

Abstract The properties of the materials are intimately related to the nature of the chemical bond. Research to explain the peculiarities of superionic materials by focusing on the bonding character of the materials is presented. In particular, a brief review of some fundamental aspects of superionic conductors is given based on the talk presented at “Solid State Chemistry 2018, Pardubice” in addition to some new results related to the subject. Specifically, the topics on bond fluctuation model of ionic conductors, the role of medium range structure in the ionic conductivity, bonding aspects of non-Arrhenius ionic conductivity and elastic properties of ionic conductors are discussed. Key concepts that are gained from these studies is stressed, such as the importance of the coexistence of different types of bonding, and the role of medium range structure in glasses for efficient ionic transport in solids. These concepts could help the development of new materials.


Author(s):  
R. B. Queenan ◽  
P. K. Davies

Na ß“-alumina (Na1.67Mg67Al10.33O17) is a non-stoichiometric sodium aluminate which exhibits fast ionic conduction of the Na+ ions in two dimensions. The Na+ ions can be exchanged with a variety of mono-, di-, and trivalent cations. The resulting exchanged materials also show high ionic conductivities.Considerable interest in the Na+-Nd3+-ß“-aluminas has been generated as a result of the recent observation of lasing in the pulsed and cw modes. A recent TEM investigation on a 100% exchanged Nd ß“-alumina sample found evidence for the intergrowth of two different structure types. Microdiffraction revealed an ordered phase coexisting with an apparently disordered phase, in which the cations are completely randomized in two dimensions. If an order-disorder transition is present then the cooling rates would be expected to affect the microstructures of these materials which may in turn affect the optical properties. The purpose of this work was to investigate the affect of thermal treatments upon the micro-structural and optical properties of these materials.


2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4083
Author(s):  
Heming Jiang ◽  
Tian-Yu Sun

A computational study on the origin of the activating effect for Pd-catalyzed directed C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this rule might disclose the role of some additives for C–H activation.


2021 ◽  
Author(s):  
Payam Abdolalian ◽  
Samaneh K. Tizhoush ◽  
Kaveh Farshadfar ◽  
Alireza Ariafard

This work uses DFT calculations to explore Pd(ii)-catalysed iodine(iii)-mediated alkoxylation of unactivated C(sp3)–H bonds and reveals how important the isomerization is in triggering the oxidative addition of ArIX2 to Pd(ii).


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1346-1354 ◽  
Author(s):  
Danielle Laurencin ◽  
Pascal G. Yot ◽  
Christel Gervais ◽  
Yannick Guari ◽  
Sébastien Clément ◽  
...  

Porphyrin nanorods were prepared by ion-association between free-base meso 5,10,15,20-tetrakis-(4-[Formula: see text]-methylpyridinium)porphyrin cations and tetraphenylborate anions. The nanorods have variable lengths (up to a few micrometers long) and diameters ([Formula: see text]50–500 nm). Their structure at the molecular level was elucidated by combining multinuclear solid state NMR spectroscopy, synchrotron X-ray powder diffraction and DFT calculations.


2006 ◽  
Vol 71 (3) ◽  
pp. 1119-1130 ◽  
Author(s):  
Rosa García ◽  
José M. Seco ◽  
Saulo A. Vázquez ◽  
Emilio Quiñoá ◽  
Ricardo Riguera

2006 ◽  
Vol 71 (25) ◽  
pp. 9331-9340 ◽  
Author(s):  
Alessandro Bagno ◽  
Willi Kantlehner ◽  
Ralf Kress ◽  
Giacomo Saielli ◽  
Edmont Stoyanov

2021 ◽  
pp. 22-32
Author(s):  
A.M. Shestakov ◽  

Shows the scientific approaches of various authors to the study of the microstructure of ceramics, the purpose of which is to elucidate its structural organization at the micro- and nanoscale, as well as the influence of the microstructure on the complex of material properties. Various instrumental methods for studying ceramics (NMR spectroscopy, electron microscopy, х-ray structural analysis, etc.) are considered, the permissible capabilities of research methods and analysis of the results obtained with their correct interpretation are shown. The special role of theoretical modeling in understanding the structure of the considered ceramic materials is noted.


Sign in / Sign up

Export Citation Format

Share Document