scholarly journals The role of hypervalent iodine(iii) reagents in promoting alkoxylation of unactivated C(sp3)–H bonds catalyzed by palladium(ii) complexes

2021 ◽  
Author(s):  
Payam Abdolalian ◽  
Samaneh K. Tizhoush ◽  
Kaveh Farshadfar ◽  
Alireza Ariafard

This work uses DFT calculations to explore Pd(ii)-catalysed iodine(iii)-mediated alkoxylation of unactivated C(sp3)–H bonds and reveals how important the isomerization is in triggering the oxidative addition of ArIX2 to Pd(ii).

2019 ◽  
Author(s):  
Alejandra Gomez-Torres ◽  
J. Rolando Aguilar-Calderón ◽  
Carlos Saucedo ◽  
Aldo Jordan ◽  
Alejandro J. Metta-Magaña ◽  
...  

<p>The masked Ti(II) synthon (<sup>Ket</sup>guan)(<i>η</i><sup>6</sup>-Im<sup>Dipp</sup>N)Ti (<b>1</b>) oxidatively adds across thiophene to give ring-opened (<sup>Ket</sup>guan)(Im<sup>Dipp</sup>N)Ti[<i>κ</i><sup>2</sup>-<i>S</i>(CH)<sub>3</sub><i>C</i>H] (<b>2</b>). Complex <b>2</b> is photosensitive, and upon exposure to light, reductively eliminates thiophene to regenerate <b>1</b> – a rare example of early-metal mediated oxidative-addition/reductive-elimination chemistry. DFT calculations indicate strong titanium π-backdonation to the thiophene π*-orbitals leads to the observed thiophene ring opening across titanium, while a proposed photoinduced LMCT promotes the reverse thiophene elimination from <b>2</b>. Finally, pressurizing solutions of <b>2 </b>with H<sub>2</sub> (150 psi) at 80 °C leads to the hydrodesulfurization of thiophene to give the Ti(IV) sulfide (<sup>Ket</sup>guan)(Im<sup>Dipp</sup>N)Ti(S) (<b>3</b>) and butane. </p>


2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4083
Author(s):  
Heming Jiang ◽  
Tian-Yu Sun

A computational study on the origin of the activating effect for Pd-catalyzed directed C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this rule might disclose the role of some additives for C–H activation.


2021 ◽  
Author(s):  
Manel Vega ◽  
Salvador Blasco ◽  
Enrique García-España ◽  
Bartolome Soberats ◽  
Antonio Frontera ◽  
...  

In the presence of Ag(I), the monoanion of a cyano-N-squaraine (I) generates an intense fluorescent turn-on response. Experimental evidence and DFT calculations reveal a sequence of deprotonation-coordination events in which...


2020 ◽  
Author(s):  
Feriel Rekhroukh ◽  
Wenyi Chen ◽  
Ryan Brown ◽  
Andrew J. P. White ◽  
Mark Crimmin

A palladium pre-catalyst, [Pd(PCy<sub>3</sub>)<sub>2</sub>] is reported for the efficient and selective C–F alumination of fluorobenzenes with the aluminium(I) reagent [{(ArNCMe)<sub>2</sub>CH}Al] (<b>1</b>, Ar = 2,6-di-iso-propylphenyl). The catalytic protocol results in the transformation of sp<sup>2</sup> C–F bonds to sp<sup>2</sup> C–Al bonds and provides a route into reactive organoaluminium complexes (<b>2a-h</b>) from fluorocarbons. The catalyst is highly active. Reactions proceed within 5 minutes at 25 ºC (and at appreciable rates at even –50 ºC) and the scope includes low-fluorine-content substrates such as fluorobenzene, difluorobenzenes and trifluorobenzenes. The reaction proceeds with complete chemoselectivity (C–F vs C–H) and high regioselectivities ( >90% for C–F bonds adjacent to the most acidic C–H sites). The heterometallic complex [Pd(PCy<sub>3</sub>)(<b>1</b>)<sub>2</sub>] was shown to be catalytically competent. Catalytic C–F alumination proceeds with a KIE of 1.1–1.3. DFT calculations have been used to model potential mechanisms for C–F bond activation. These calculations suggest that two competing mechanisms may be in operation. Pathway 1 involves a ligand-assisted oxidative addition to [Pd(<b>1</b>)<sub>2</sub>] and leads directly to the product. Pathway 2 involves a stepwise C–H to C–F functionalisation mechanism in which the C–H bond is broken and reformed along the reaction coordinate, allowing it to act as a directing group for the adjacent C–F site. This second mechanism explains the experimentally observed regioselectivity. Experimental support for this C–H activation playing a key role in C–F alumination was obtained by employing [{(MesNCMe)<sub>2</sub>CH}AlH<sub>2</sub>] (<b>3</b>, Mes = 2,4,6-trimethylphenyl) as a reagent in place of 1. In this instance, the kinetic C–H alumination intermediate could be isolated. Under catalytic conditions this intermediate converts to the thermodynamic C–F alumination product.


Author(s):  
Yanhong Liu ◽  
Rong-Xiu Zhu ◽  
Chengbu Liu ◽  
Dongju Zhang

DFT and TD-DFT calculations were performed to better understand the photosensitizer-free visible-light-mediated Au-catalyzed cross-couplings between aryldiazonium salts and arylboronic acids. The π–π type complex between the aryldiazonium salt and the...


Author(s):  
Karla Furtado Andriani ◽  
Priscilla Felício Sousa ◽  
Felipe Orlando Morais ◽  
Juarez L. F. Da Silva

In this work, we report a theoretical investigation of the role of quantum-size effects (QSE) on the dehydrogenation of methane (CH4) on 3d transition-metal clusters, TMn , where TM =...


2020 ◽  
Vol 18 (6) ◽  
pp. 1117-1129 ◽  
Author(s):  
Amritpal Kaur ◽  
Alireza Ariafard

Density functional theory (DFT) at the SMD/M06-2X/def2-TZVP//SMD/M06-2X/LANL2DZ(d),6-31G(d) level was used to explore the regioselective double oxidation of phenols by a hypervalent iodine(v) reagent (IBX) to give o-quinones.


2020 ◽  
Vol 22 (9) ◽  
pp. 5249-5254 ◽  
Author(s):  
Yuting Liu ◽  
Xiaofang Su ◽  
Wei Guan ◽  
Likai Yan

In this work, the mechanism of water oxidation catalyzed by an Ru-based complex [Ru(L)]+ (L = 5,5-chelated 2-carboxy-phen, 2,2′;6′,2′′-terpyridine) was studied by density functional theory (DFT) calculations.


Sign in / Sign up

Export Citation Format

Share Document