Tailoring desolvation kinetics enables stable zinc metal anodes

2020 ◽  
Vol 8 (37) ◽  
pp. 19367-19374
Author(s):  
Zhen Hou ◽  
Hong Tan ◽  
Yao Gao ◽  
Menghu Li ◽  
Ziheng Lu ◽  
...  

The solvation structure of Zn2+ is regulated through incorporating acetonitrile (AN) into the electrolyte, elevating nucleation sites and stablizing zinc metal anode, as revealed by the complementary theoretical and experimental studies.

Author(s):  
Xiaotan Zhang ◽  
Jiangxu Li ◽  
Dongyan Liu ◽  
Mengke Liu ◽  
Tiansheng Zhou ◽  
...  

Zinc metal anode in aqueous zinc-ion batteries (AZIBs) is considerably impeded by uncontrollable dendrite growth and intricately water-induced corrosion, leading to low Coulombic efficiency (CE) and limited lifespan. Herein, a...


2021 ◽  
Author(s):  
Peixun Xiong ◽  
Yingbo Kang ◽  
Nan Yao ◽  
Xiang Chen ◽  
Lingxing Zeng ◽  
...  

Abstract Aqueous zinc-metal batteries are promising for large-scale energy storage owing to their reasonable energy density, safety and low cost. However, their practical applications are limited by hydrogen evolution, corrosion, and dendrite formation of Zn anode and there is trade-off between efficiency and stability at high and low temperatures. Herein, we propose a solvation chemistry regulation strategy that can adjust the Zn2+-solvation structure and in situ form a robust and Zn2+-conducting Zn5(CO3)2(OH)6 SEI on the Zn surface, using hybrid electrolytes of water and a polar aprotic N, N-dimethylformamide. As verified by experimental characterizations and computational analyses, the unique solvation structure and the newly formed solid electrolyte interface are created by hybrid electrolytes, resulting in highly reversible and dendrite-free Zn plating/stripping process as well as thermal stability and high ionic conductivity from −30 to 70 °C. The Zn||Zn symmetric cells in hybrid electrolytes are very stable over 2500 h at 25 ℃ and 2000 h even at –20 ℃. Thus, the stability and reversibility of the hybrid zinc-ion capacitors with Zn metal anode in hybrid electrolytes are firstly achieved in a wide and extreme temperature range, demonstrating high capacity retentions and Coulombic efficiencies over 14000, 10000, and 600 cycles at 25, −20, and 70 ℃, respectively.


Author(s):  
Qiu Zhang ◽  
Yilin Ma ◽  
Yong Lu ◽  
Xunzhu Zhou ◽  
Liu Lin ◽  
...  

2020 ◽  
Vol 27 ◽  
pp. 109-116 ◽  
Author(s):  
Yan Tang ◽  
Cunxin Liu ◽  
Hanrui Zhu ◽  
Xuesong Xie ◽  
Jiawei Gao ◽  
...  

2021 ◽  
pp. 139094
Author(s):  
Yachun Mao ◽  
Huaizheng Ren ◽  
Jiachi Zhang ◽  
Tao Luo ◽  
Nannan Liu ◽  
...  

Small ◽  
2021 ◽  
pp. 2100722
Author(s):  
Junya Cui ◽  
Zhenhua Li ◽  
Annan Xu ◽  
Jianbo Li ◽  
Mingfei Shao

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhen Hou ◽  
Yao Gao ◽  
Hong Tan ◽  
Biao Zhang

AbstractStable plating/stripping of metal electrodes under high power and high capacity remains a great challenge. Tailoring the deposition behavior on the substrate could partly resolve dendrites’ formation, but it usually works only under low current densities and limited capacities. Here we turn to regulate the separator’s interfacial chemistry through tin coating with decent conductivity and excellent zincophilicity. The former homogenizes the electric field distribution for smooth zinc metal on the substrate, while the latter enables the concurrent zinc deposition on the separator with a face-to-face growth. Consequently, dendrite-free zinc morphologies and superior cycling stability are achieved at simultaneous high current densities and large cycling capacities (1000 h at 5 mA/cm2 for 5 mAh/cm2 and 500 h at 10 mA/cm2 for 10 mAh/cm2). Furthermore, the concept could be readily extended to sodium metal anodes, demonstrating the interfacial chemistry regulation of separator is a promising route to circumvent the metal anode challenges.


2018 ◽  
Vol 6 (2) ◽  
pp. 247-256 ◽  
Author(s):  
Yi-Chen Yin ◽  
Zhi-Long Yu ◽  
Zhi-Yuan Ma ◽  
Tian-Wen Zhang ◽  
Yu-Yang Lu ◽  
...  

Abstract Lithium metal is one of the most promising anode materials for high-energy-density Li batteries. However, low stability caused by dendrite growth and volume change during cycling hinders its practical application. Herein, we report an ingenious design of bio-inspired low-tortuosity carbon with tunable vertical micro-channels to be used as a host to incorporate nanosized Sn/Ni alloy nucleation sites, which can guide Li metal's plating/stripping and meanwhile accommodate the volume change. The pore sizes of the vertical channels of the carbon host can be regulated to investigate the structure–performance correlation. After compositing Li, the bio-inspired carbon host with the smallest pore size (∼14 μm) of vertical channels exhibits the lowest overpotential (∼18 mV at 1 mA cm−2), most stable tripping/plating voltage profiles, and best cycling stability (up to 500 cycles) in symmetrical cells. Notably, the carbon/Li composite anode is more rewarding than Li foil when coupled with LiFePO4 in full cells, exhibiting a much lower polarization effect, better rate capability and higher capacity retention (90.6% after 120 cycles). This novel bio-inspired design of a low-tortuosity carbon host with nanoalloy coatings may open a new avenue for fabricating advanced Li-metal batteries with high performance.


1995 ◽  
Vol 10 (4) ◽  
pp. 962-980 ◽  
Author(s):  
Yangsheng Zhang ◽  
Gregory C. Stangle

The influence of the key nucleation and grain growth parameters on (i) the evolution of the microstructure of the product phase (on a microscopic level) and (ii) the combustion synthesis process (on a macroscopic level) were investigated for the combustion synthesis process in the Nb-C system. This work is an integral part of the continuing effort1–3 to develop a more complete theoretical model for combustion synthesis processes in general. In particular, the nucleation and growth of the NbC(s) product phase from the supersaturated liquid Nb/C mixture that appears briefly during the combustion synthesis process was treated in a greater detail by using a decidedly more sophisticated treatment of the nucleation and growth process (as developed in the field of rapid solidification and welding). It was shown that the microstructure of the NbC(s) product phase, including the evolution of the grain size and the size distribution, and the development of the grain's morphology, as well as the combustion wave velocity, are significantly influenced by the total number density of the nucleation sites, nmax, that are present in the system. The grain size distribution was shown to possess a monosize distribution, since during the combustion synthesis process the rate of increase of the degree of local undercooling was very high so that the nucleation process took place (locally) during a very brief period of time. This work provides a sound basis for developing a better control of the microstructure, and for a better understanding and interpretation of the results of related experimental studies.


2018 ◽  
Vol 54 (60) ◽  
pp. 8347-8350 ◽  
Author(s):  
Cheng Guo ◽  
Huijun Yang ◽  
Ahmad Naveed ◽  
Yanna Nuli ◽  
Jun Yang ◽  
...  

A versatile interlayer in which AlF3 particles are embedded within carbon nanofibers is reported to stabilize the Li metal anode.


Sign in / Sign up

Export Citation Format

Share Document