scholarly journals Phosphoric acid and thermal treatments reveal the peculiar role of surface oxygen anions in lithium and manganese-rich layered oxides

2021 ◽  
Vol 9 (1) ◽  
pp. 264-273
Author(s):  
Jiarong He ◽  
Weibo Hua ◽  
Aleksandr Missiul ◽  
Georgian Melinte ◽  
Chittaranjan Das ◽  
...  

The peculiar role of surface oxygen anions and surface reconstruction in Co-free layered Li[Li0.2Ni0.2Mn0.6]O2 is discovered by dilute phosphoric acid and thermal treatments.

Author(s):  
Vittorio Berbenni ◽  
Chiara Milanese ◽  
Gianna Bruni ◽  
Pacifico Cofrancesco ◽  
Amedeo Marini ◽  
...  
Keyword(s):  

2019 ◽  
Vol 40 (30) ◽  
pp. 2611-2621
Author(s):  
Ping Liu ◽  
Lixia Ling ◽  
Hao Lin ◽  
Baojun Wang
Keyword(s):  

1987 ◽  
Vol 94 ◽  
Author(s):  
S. B. Ogale ◽  
M. Thomsen ◽  
A. Madhukar

ABSTRACTComputer simulations of III-V molecular beam epitaxy (MBE) show that surface reconstruction induced modulation of kinetic rates could give rise to ordering in alloys. Results are also presented for the possible influence of an external ion beam in achieving low temperature epitaxy as well as smoother growth front under usual conditions.


2022 ◽  
Vol 427 ◽  
pp. 131978
Author(s):  
Huixian Xie ◽  
Jiaxiang Cui ◽  
Zhuo Yao ◽  
Xiaokai Ding ◽  
Zuhao Zhang ◽  
...  
Keyword(s):  

1998 ◽  
Vol 130-132 ◽  
pp. 101-106 ◽  
Author(s):  
D.M Li ◽  
M Atoji ◽  
M Yamazaki ◽  
T Okamoto ◽  
T Tambo ◽  
...  

2021 ◽  
Author(s):  
Kartik Sau ◽  
Tamio Ikeshoji ◽  
Godwill Mbiti Kanyolo ◽  
Titus Masese

<b>Although the fascinatingly rich crystal chemistry of honeycomb layered oxides has been accredited as the propelling force behind their remarkable electrochemistry, the atomistic mechanisms surrounding their operations remain unexplored. Thus, herein, we present an extensive molecular dynamics study performed systematically using a refined set of inter-atomic potential parameters of <i>A</i><sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> (where <i>A</i> = Li, Na, and K). We demonstrate the effectiveness of the Vashishta-Rahman form of the interatomic potential in reproducing various structural and transport properties of this promising class of materials and predict an exponential increase in cationic diffusion with larger interlayer distances. The simulations further demonstrate the correlation between broadened inter-layer (inter-slab) distances associated with the larger ionic radii of K and Na compared to Li and the enhanced cationic conduction exhibited in K<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> and Na<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> relative to Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub>. Whence, our findings connect lower potential energy barriers, favourable cationic paths and wider bottleneck size along the cationic diffusion channel within frameworks (comprised of larger mobile cations) to the improved cationic diffusion experimentally observed in honeycomb layered oxides. Furthermore, we explicitly study the role of inter-layer distance and cationic size in cationic diffusion. Our theoretical studies reveal the dominance of inter-layer distance over cationic size, a crucial insight into the further performance enhancement of honeycomb layered oxides.</b><br>


2021 ◽  
Author(s):  
Kartik Sau ◽  
Tamio Ikeshoji ◽  
Godwill Mbiti Kanyolo ◽  
Titus Masese

<b>Although the fascinatingly rich crystal chemistry of honeycomb layered oxides has been accredited as the propelling force behind their remarkable electrochemistry, the atomistic mechanisms surrounding their operations remain unexplored. Thus, herein, we present an extensive molecular dynamics study performed systematically using a reliable set of inter-atomic potential parameters of </b><i>A</i><sub>2</sub><b>Ni</b><sub>2</sub><b>TeO</b><sub>6</sub><b> (where </b><i>A</i><b> = Li, Na, and K). We demonstrate the effectiveness of the Vashishta-Rahman form of the inter-atomic potential in reproducing various structural and transport properties of this promising class of materials and predict an exponential increase in cationic diffusion with larger inter-layer distances. The simulations demonstrate the correlation between broadened inter-layer (inter-slab) distances associated with the larger ionic radii of K and Na compared to Li and the enhanced cationic conduction exhibited in K</b><sub>2</sub><b>Ni</b><sub>2</sub><b>TeO</b><sub>6</sub><b> and Na</b><sub>2</sub><b>Ni</b><sub>2</sub><b>TeO</b><sub>6</sub><b> relative to Li</b><sub>2</sub><b>Ni</b><sub>2</sub><b>TeO</b><sub>6</sub><b>. Whence, our findings connect lower potential energy barriers, favourable cationic paths and wider bottleneck size along the cationic diffusion channel within frameworks (comprised of larger mobile cations) to the improved cationic diffusion experimentally observed in honeycomb layered oxides. Furthermore, we elucidate the role of inter-layer distance and cationic size in cationic diffusion. Our theoretical studies reveal the dominance of inter-layer distance over cationic size, a crucial insight into the further performance enhancement of honeycomb layered oxides.</b><br>


Author(s):  
Huiru Zhao ◽  
Hongyan Meng ◽  
Qiurong Zhang ◽  
Yining Wu ◽  
Haotian Chen ◽  
...  

The coating of nanoparticles (NPs) with biodegradable ligands has been considered an efficient way to improve the biocompatibility of NPs and to decrease their biopersistence. However, the role of ligand...


Sign in / Sign up

Export Citation Format

Share Document