Wood-based self-supporting flexible electrode materials for energy storage applications

Author(s):  
Linlin Liu ◽  
Zhen Ji ◽  
Shuyan Zhao ◽  
Qingyuan Niu ◽  
Songqi Hu

The delignified wood-based self-supporting carbon material is an ideal basic interdigital flexible electrode material, which has good application potential.

2021 ◽  
Author(s):  
Mirai Ohara ◽  
A. Shahul Hameed ◽  
Kei Kubota ◽  
Akihiro Katogi ◽  
Kuniko Chihara ◽  
...  

K-ion batteries (KIBs) are promising for large-scale electrical energy storage owing to the abundant resources and the electrochemical specificity of potassium. Among the positive electrode materials for KIBs, vanadium-based polyanionic...


Nanoscale ◽  
2021 ◽  
Author(s):  
Hang Zhang ◽  
Xuemin Wang ◽  
Zhengzheng Li ◽  
Cui Zhang ◽  
Shuangxi Liu

Transition-metal selenides are capturing eminence as promising electrode materials for energy storage applications owing to their low electronegativity and environment-friendly compared with metal sulfides/oxides. Herein, a CuCoSe@NC nanocomposite with copper-cobalt...


2020 ◽  
Vol 44 (25) ◽  
pp. 10592-10603
Author(s):  
Selcuk Poyraz

Nanostructured hybrid electrode materials are prepared in one-step via a MW energy-based approach with promising electrochemical energy storage application performance.


2020 ◽  
Vol 4 (10) ◽  
pp. 5313-5326 ◽  
Author(s):  
S. Rajkumar ◽  
E. Elanthamilan ◽  
J. Princy Merlin ◽  
I. Jenisha Daisy Priscillal ◽  
I. Sharmila Lydia

The as-synthesized CuCo2O4/PANI nanocomposite has emerged as a new type of electrode material for energy storage applications due to its low cost and sustainable and high electrochemical performance.


Author(s):  
Peng Wang ◽  
Danyang Zhao ◽  
Long-Wei Yin

Diversified electrochemical energy storage systems highly depend on electrode material construction. In response, single atom catalysts intentionally incorporated within two-dimensional (2D) matrices (SAs@2D) can offer desirable advantages derived from the...


Sign in / Sign up

Export Citation Format

Share Document