scholarly journals Towards a traceable enhancement factor in surface-enhanced Raman spectroscopy

2020 ◽  
Vol 8 (46) ◽  
pp. 16513-16519
Author(s):  
Eleonora Cara ◽  
Luisa Mandrile ◽  
Alessio Sacco ◽  
Andrea M. Giovannozzi ◽  
Andrea M. Rossi ◽  
...  

Determination of the SERS enhancement factor through the challenging measurement of the molecular surface density by reference-free X-ray fluorescence.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Nathan D. Israelsen ◽  
Cynthia Hanson ◽  
Elizabeth Vargis

Raman spectroscopy has enabled researchers to map the specific chemical makeup of surfaces, solutions, and even cells. However, the inherent insensitivity of the technique makes it difficult to use and statistically complicated. When Raman active molecules are near gold or silver nanoparticles, the Raman intensity is significantly amplified. This phenomenon is referred to as surface-enhanced Raman spectroscopy (SERS). The extent of SERS enhancement is due to a variety of factors such as nanoparticle size, shape, material, and configuration. The choice of Raman reporters and protective coatings will also influence SERS enhancement. This review provides an introduction to how these factors influence signal enhancement and how to optimize them during synthesis of SERS nanoparticles.


2021 ◽  
pp. 000370282110329
Author(s):  
Ling Wang ◽  
Mario O. Vendrell-Dones ◽  
Chiara Deriu ◽  
Sevde Doğruer ◽  
Peter de B. Harrington ◽  
...  

Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1244 ◽  
Author(s):  
Paola Pellacani ◽  
Carlo Morasso ◽  
Silvia Picciolini ◽  
Dario Gallach ◽  
Lucia Fornasari ◽  
...  

Sequential plasma processes combined with specific lithographic methods allow for the fabrication of advanced material structures. In the present work, we used self-assembled colloidal monolayers as lithographic structures for the conformation of ordered Si submicrometer pillars by reactive ion etching. We explored different discharge conditions to optimize the Si pillar geometry. Selected structures were further decorated with gold by conventional sputtering, prior to colloidal monolayer lift-off. The resulting structures consist of a gold crown, that is, a cylindrical coating on the edge of the Si pillar and a cavity on top. We analysed the Au structures in terms of electronic properties by using X-ray absorption spectroscopy (XAS) prior to and after post-processing with thermal annealing at 300 °C and/or interaction with a gold etchant solution (KI). The angular dependent analysis of the plasmonic properties was studied with Fourier transformed UV-vis measurements. Certain conditions were selected to perform a surface enhanced Raman spectroscopy (SERS) evaluation of these platforms with two model dyes, prior to confirming the potential interest for a well-resolved analysis of filtered blood plasma.


Sensors ◽  
2018 ◽  
Vol 18 (4) ◽  
pp. 1082 ◽  
Author(s):  
Lei Lin ◽  
Tao Dong ◽  
Pengcheng Nie ◽  
Fangfang Qu ◽  
Yong He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document