Molecular imaging of plant-microbe interactions on the Brachypodium seed surface

The Analyst ◽  
2021 ◽  
Author(s):  
Yuchen Zhang ◽  
Rachel Komorek ◽  
Jiyoung Son ◽  
Shawn Riechers ◽  
Zihua Zhu ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanism(s) by which plants associate with PGPR to elicit...

2013 ◽  
Vol 66 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Samuel Julio Martins ◽  
Flavio Henrique Vasconcelos de Medeiros ◽  
Ricardo Magela de Souza ◽  
Mário Lúcio Vilela de Resende ◽  
Pedro Martins Ribeiro

Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 179 ◽  
Author(s):  
Alawiye ◽  
Babalola

Bacteria play a vital role in the quality of soil, health, and the production of plants. This has led to several studies in understanding the diversity and structure in the plant rhizosphere. Over the years, there have been overwhelming advances in molecular biology which have led to the development of omics techniques which utilize RNA, DNA, or proteins as biomolecules; these have been gainfully used in plant–microbe interactions. The bacterial community found in the rhizosphere is known for its colonization around the roots due to availability of nutrients, and composition, and it affects the plant growth directly or indirectly. Metabolic fingerprinting enables a snapshot of the metabolic composition at a given time. We review metabolites with ample information on their benefit to plants and which are found in rhizobacteria such as Pseudomonas spp. and Bacillus spp. Exploring plant-growth-promoting rhizobacteria using omics techniques can be a true success story for agricultural sustainability.


Sign in / Sign up

Export Citation Format

Share Document