Biodiscovery of Plant Growth-Promoting Rhizobacteria and their role in plant-microbe interactions

Author(s):  
Ahmad Rosli
The Analyst ◽  
2021 ◽  
Author(s):  
Yuchen Zhang ◽  
Rachel Komorek ◽  
Jiyoung Son ◽  
Shawn Riechers ◽  
Zihua Zhu ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanism(s) by which plants associate with PGPR to elicit...


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 179 ◽  
Author(s):  
Alawiye ◽  
Babalola

Bacteria play a vital role in the quality of soil, health, and the production of plants. This has led to several studies in understanding the diversity and structure in the plant rhizosphere. Over the years, there have been overwhelming advances in molecular biology which have led to the development of omics techniques which utilize RNA, DNA, or proteins as biomolecules; these have been gainfully used in plant–microbe interactions. The bacterial community found in the rhizosphere is known for its colonization around the roots due to availability of nutrients, and composition, and it affects the plant growth directly or indirectly. Metabolic fingerprinting enables a snapshot of the metabolic composition at a given time. We review metabolites with ample information on their benefit to plants and which are found in rhizobacteria such as Pseudomonas spp. and Bacillus spp. Exploring plant-growth-promoting rhizobacteria using omics techniques can be a true success story for agricultural sustainability.


2021 ◽  
Author(s):  
Anna Sommer ◽  
Marion Wenig ◽  
Claudia Knappe ◽  
Susanne Kublik ◽  
Baerbel Foesel ◽  
...  

Both above- and below-ground parts of plants are constantly confronted with microbes, which are main drivers for the development of plant-microbe interactions. Plant growth-promoting rhizobacteria enhance the immunity of above-ground tissues, which is known as induced systemic resistance (ISR). We show here that ISR also influences the leaf microbiome. We compared ISR triggered by the model strain Pseudomonas simiae WCS417r (WCS417) to that triggered by Bacillus thuringiensis israelensis (Bti) in Arabidopsis thaliana. In contrast to earlier findings, immunity elicited by both strains depended on salicylic acid. Both strains further relied on MYC2 for signal transduction in the plant, while WCS417-elicited ISR additionally depended on SAR-associated metabolites, including pipecolic acid. A metabarcoding approach applied to the leaf microbiome revealed a significant ISR-associated enrichment of amplicon sequence variants with predicted plant growth-promoting properties. WCS417 caused a particularly dramatic shift in the leaf microbiota with more than 50% of amplicon reads representing two bacterial species: WCS417 and Flavobacterium sp.. Co-inoculation experiments using WCS417 and At-LSPHERE Flavobacterium sp. Leaf82, suggest that the proliferation of these bacteria is influenced by both microbial and plant-derived factors. Together, our data connect systemic immunity with leaf microbiome dynamics and highlight the importance of plant-microbe-microbe interactions for plant health.


2019 ◽  
Author(s):  
Uzma Sultana ◽  
Suseelendra Desai ◽  
Gopal Reddy ◽  
TNVKV Prasad

AbstractStrains of Pseudomonas, Bacillus and Azospirillum with plant growth promoting ability were checked for their zinc solubilizing ability. Efficient zinc solubilizers were checked for their ability to produce nano-scale zinc particles. The nanoparticles from the cell-free culture filtrates obtained from these strains were characterized for particle size, Zeta potential and functional groups. Presence of Zn nanoparticles in the bacterial culture filtrate was confirmed by particle distribution and Scanning electron microscope (SEM) analysis. Most properties of nanoparticles are size dependent. Zinc nanoparticles were observed to be spherical in shape and size ranged from 52.0 to 106.0 nm. Zeta potential of the Zn nanoparticles was estimated to understand the stability of the particles. The measured zeta potentials varied from −14.5mV to +179.10 mV indicating high stability and dispersion of the zinc nanoparticles. FTIR peaks at different wave numbers depicted the role of functional groups of proteins in the biosynthesis of Zn nanoparticles. This finding opens a new area of research focusing on microbe-microbe interactions in rhizosphere and plant-microbe interactions at rhizosphere apart from biosynthesis of nanoparticles, which has major applications. To our knowledge, this is the first report of production of nanoparticles as part of nutrient mobilization by plant growth promoting rhizobacteria.


2020 ◽  
Vol 21 (1) ◽  
pp. 14-19
Author(s):  
Praptiningsih Gamawati Adinurani ◽  
Sri Rahayu ◽  
Nurul Fima Zahroh

Mikroba Bacillus subtilis merupakan agen pengendali hayati mempunyai kelebihan sebagai Plant Growth Promoting Rhizobacteria (PGPR) yaitu dapat berfungsi sebagai biofertilizer, biostimulan, biodekomposer dan bioprotektan. Tujuan penelitian mengetahui potensi B. subtilis dalam merombak bahan organik sebagai usaha meningkatkan ketersediaan bahan organik tanah yang semakin menurun. Penelitian menggunakan Rancangan Petak Terbagi dengan berbagai  bahan organik sebagai petak utama (B0 = tanpa bahan organik, B1 = kotoran ayam,  B2 = kotoran kambing, B3 = kotoran sapi) dan aplikasi B.subtilis sebagai anak petak (A0 = 0 cc/L, A1 = 5cc/L, A2 = 10 cc/L, Pengamatan meliputi variabel tinggi tanaman, indeks luas daun, jumlah buah per tanaman, berat buah per tanaman, dan bahan organik tanah. Data pengamatan  dianalisis ragam  menggunakan  Statistical Product and Service Solutions (SPSS) versi 25 dan dilanjutkan dengan uji Duncan untuk mengetahui signifikansi perbedaan antar perlakuan. Hasil penelitian menunjukkan tidak terdapat interaksi antara bahan organik kotoran ternak dan konsentrasi B. subtilis terhadap semua variabel pengamatan. Potensi B. subtilis sangat baik dalam mendekomposisi bahan organik yang ditunjukkan dengan peningkatan bahan organik, dan hasil terbaik pada kotoran  sapi (B3) dan konsentrasi B. subtilis 15 mL/L masing-masing sebesar 46.47 % dan 34.76 %. Variabel pertumbuhan tidak berbeda nyata kecuali tinggi tanaman dengan pertambahan tinggi paling banyak pada pemberian kotoran kambing sebesar 170.69 %.


Sign in / Sign up

Export Citation Format

Share Document