scholarly journals Bacterial Diversity and Community Structure in Typical Plant Rhizosphere

Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 179 ◽  
Author(s):  
Alawiye ◽  
Babalola

Bacteria play a vital role in the quality of soil, health, and the production of plants. This has led to several studies in understanding the diversity and structure in the plant rhizosphere. Over the years, there have been overwhelming advances in molecular biology which have led to the development of omics techniques which utilize RNA, DNA, or proteins as biomolecules; these have been gainfully used in plant–microbe interactions. The bacterial community found in the rhizosphere is known for its colonization around the roots due to availability of nutrients, and composition, and it affects the plant growth directly or indirectly. Metabolic fingerprinting enables a snapshot of the metabolic composition at a given time. We review metabolites with ample information on their benefit to plants and which are found in rhizobacteria such as Pseudomonas spp. and Bacillus spp. Exploring plant-growth-promoting rhizobacteria using omics techniques can be a true success story for agricultural sustainability.

The Analyst ◽  
2021 ◽  
Author(s):  
Yuchen Zhang ◽  
Rachel Komorek ◽  
Jiyoung Son ◽  
Shawn Riechers ◽  
Zihua Zhu ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanism(s) by which plants associate with PGPR to elicit...


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan P. Nordstedt ◽  
Michelle L. Jones

Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Muhammad Yusril Hardiansyah ◽  
Yunus Musa ◽  
Abdul Mollah Jaya

The low productivity of cocoa plantations in Indonesia is partly due to the low quality of seeds, which refers to the impeded growth of cultivated cocoa nurseries. Seed is the initial growth of plants so the importance of giving special treatment to seeds will refer to better seed growth. Provision of Plant Growth Promoting Rhizobacteria (PGPR) microbes can produce indoleacetic acid (IAA) in plants to improve the quality of plant growth. This study aims to determine the effectiveness of the provision of Plant Growth Promoting Rhizobacteria bamboo rhizosphere against cocoa seed germination. The study was carried out in the farmer group garden, Gantarangkeke District, Bantaeng. This study was arranged in the form of a two-factor factorial design (F2F) in a randomized block design (RBD). The use of cocoa seed type as the first factor consisted of GTB (Gantarangkeke Bantaeng) local cocoa seed and MCC 01 cocoa seed and seed immersion treatment at PGPR rhizosphere bamboo concentration as the second factor consisting of 0% (control) concentration, 5%, 10 % and 15%. The results obtained indicate that administration of seeds with bamboo rhizosphere PGPR affects the germination (100.00%), the speed of seed growth (7.14%/etmal), as well as on abnormal seeds (10.00%). So that the provision of bamboo rhizosphere PGPR on cocoa seeds has an effective influence on seed germination and cocoa seedling development.


2020 ◽  
Vol 273 ◽  
pp. 111118 ◽  
Author(s):  
Zobia Khatoon ◽  
Suiliang Huang ◽  
Mazhar Rafique ◽  
Ali Fakhar ◽  
Muhammad Aqeel Kamran ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2065
Author(s):  
Hammad Anwar ◽  
Xiukang Wang ◽  
Azhar Hussain ◽  
Muhammad Rafay ◽  
Maqshoof Ahmad ◽  
...  

Plant growth-promoting rhizobacteria with multiple growth-promoting traits play a significant role in soil to improve soil health, crop growth and yield. Recent research studies have focused on the integration of organic amendments with plant growth-promoting rhizobacteria (PGPR) to enhance soil fertility and reduce the hazardous effects of chemical fertilizers. This study aims to evaluate the integrated application of biochar, compost, fruit and vegetable waste, and Bacillus subtilis (SMBL 1) to soil in sole application and in combined form. The study comprises eight treatments—four treatments without inoculation and four treatments with SMBL 1 inoculation in a completely randomized design (CRD), under factorial settings with four replications. The results indicate that the integrated treatments significantly improved okra growth and yield compared with sole applications. The integration of SMBL 1 with biochar showed significant improvements in plant height, root length, leaf chlorophyll a and b, leaf relative water content, fruit weight, diameter and length by 29, 29, 50, 53.3, 4.3, 44.7 and 40.4%, respectively, compared with control. Similarly, fruit N, P and K contents were improved by 33, 52.7 and 25.6% and Fe and Zn in shoot were 37.1 and 35.6%, respectively, compared with control. The results of this study reveal that the integration of SMBL 1 with organic amendments is an effective approach to the sustainable production of okra.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Sadhana Venkatesh ◽  
Sandeep Suryan ◽  
Nagananda Govinahalli Shivashankara ◽  
Swetha Seshagiri

Soil is a dynamic ecosystem which provides support to plant life. Microorganisms inhabiting the rhizosphere region of soil play a key role in agriculture by promoting the exchange of plant nutrients and reducing the application of chemical fertilizers to a large extent. Engineering of rhizospheric region through exploitation of specific microorganisms leads to higher microbial diversity in the soil which in turn plays a significant role in maintaining the soil health. The present work envisages the isolation, screening and biochemical profiling of potent plant growth promoting rhizobacteria from various rhizospheric soils in and around Bangalore. Sixty isolates from rhizospheric region of fourteen different agricultural soils were screened for plant growth promoting traits such as phosphate solubilization, siderophore production, Ammonia, HCN & Phytohormone production. Twelve isolates that exhibited plant growth promotional traits were further subjected to screening for drought and salt tolerance. Among the twelve isolates, four potential isolates namely Serratia marcescens, Pseudomonas aeruginosa and Acinetobacter pittii were identified based on biochemical methods and 16SrRNA sequencing.


2015 ◽  
Vol 16 (1) ◽  
pp. 123 ◽  
Author(s):  
Shweta Gupta ◽  
Rajesh Kaushal ◽  
Kirti Kaundal ◽  
Anjali Chauhan ◽  
Ranjit Singh Spehia

Sign in / Sign up

Export Citation Format

Share Document