Application of serum mid-infrared spectroscopy combined with an ensemble learning method in rapid diagnosis of gliomas

2021 ◽  
Vol 13 (39) ◽  
pp. 4642-4651
Author(s):  
Hanwen Qu ◽  
Wei Wu ◽  
Chen Chen ◽  
Ziwei Yan ◽  
Wenjia Guo ◽  
...  

Diffuse growth of glioma cells leads to gliomatosis, which has a low cure rate and high mortality. This study aims to find an efficient and accurate diagnostic method for glioma by using infrared spectroscopy combined with ensemble learning model and decision level fusion.

2011 ◽  
Vol 28 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Oto Hanuš ◽  
Václava Genčurová ◽  
Yunhai Zhang ◽  
Pavel Hering ◽  
Jaroslav Kopecký ◽  
...  

Milk acetone determination by the photometrical method after microdiffusion and via FT infra-red spectroscopyMilk acetone (AC) and betahydroxybutyrate (BHB) are important indicators of the energy metabolism of cows (ketosis occurrence) and an effective method for their determination, with reliable results, is of great importance. The goal of this work was to investigate the infrared method MIR-FT in terms of its calibration for milk AC and to develop a usable procedure. The microdiffusion photometric (485 nm; Spekol 11) method was used with salicylaldehyde as a reference (Re) and mid infrared spectroscopy FT (MIR-FT: Lactoscope FT-IR, Delta; MilkoScan FT 6000, M-Sc) as an indirect method. The acetone addition to milk had no recovery using MIR-FT (Delta). The reference AC set must have acceptable statistics for good MIR-FT calibration (M-Sc) and they were: 10.1 ± 9.74 at a geometric mean of 7.26 mg l-1, and a variation range from 1.98 to 33.66 mg l-1. The AC correlation between Re and MIR-FT (Delta) was low at 0.32 (P>0.05 but the Log AC relationship between Re and MIR-FT (M-Sc) was markedly better at 0.80 (P<0.01). The conversion of >10 mg l-1 as an AC subclinical ketosis limit could be > -0.80 (feedback 0.158 mmol l-1 = 9.25 mg l-1) and > -1.66. This could be important for ketosis monitoring (using M-Sc).


2021 ◽  
Vol 164 ◽  
pp. 106029
Author(s):  
Diego Maciel Gerônimo ◽  
Sheila Catarina de Oliveira ◽  
Frederico Luis Felipe Soares ◽  
Patricio Peralta-Zamora ◽  
Noemi Nagata

2021 ◽  
Vol 162 ◽  
pp. 103894
Author(s):  
Thao Pham ◽  
Cornelia Rumpel ◽  
Yvan Capowiez ◽  
Pascal Jouquet ◽  
Céline Pelosi ◽  
...  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jordi Ortuño ◽  
Sokratis Stergiadis ◽  
Anastasios Koidis ◽  
Jo Smith ◽  
Chris Humphrey ◽  
...  

Abstract Background The presence of condensed tannins (CT) in tree fodders entails a series of productive, health and ecological benefits for ruminant nutrition. Current wet analytical methods employed for full CT characterisation are time and resource-consuming, thus limiting its applicability for silvopastoral systems. The development of quick, safe and robust analytical techniques to monitor CT’s full profile is crucial to suitably understand CT variability and biological activity, which would help to develop efficient evidence-based decision-making to maximise CT-derived benefits. The present study investigates the suitability of Fourier-transformed mid-infrared spectroscopy (MIR: 4000–550 cm−1) combined with multivariate analysis to determine CT concentration and structure (mean degree of polymerization—mDP, procyanidins:prodelphidins ratio—PC:PD and cis:trans ratio) in oak, field maple and goat willow foliage, using HCl:Butanol:Acetone:Iron (HBAI) and thiolysis-HPLC as reference methods. Results The MIR spectra obtained were explored firstly using Principal Component Analysis, whereas multivariate calibration models were developed based on partial least-squares regression. MIR showed an excellent prediction capacity for the determination of PC:PD [coefficient of determination for prediction (R2P) = 0.96; ratio of prediction to deviation (RPD) = 5.26, range error ratio (RER) = 14.1] and cis:trans ratio (R2P = 0.95; RPD = 4.24; RER = 13.3); modest for CT quantification (HBAI: R2P = 0.92; RPD = 3.71; RER = 13.1; Thiolysis: R2P = 0.88; RPD = 2.80; RER = 11.5); and weak for mDP (R2P = 0.66; RPD = 1.86; RER = 7.16). Conclusions MIR combined with chemometrics allowed to characterize the full CT profile of tree foliage rapidly, which would help to assess better plant ecology variability and to improve the nutritional management of ruminant livestock.


Sign in / Sign up

Export Citation Format

Share Document