A highly porous type II collagen containing scaffold for the treatment of cartilage defects enhances MSC chondrogenesis and early cartilaginous matrix deposition.

2022 ◽  
Author(s):  
Claudio Intini ◽  
Mark Lemoine ◽  
Tom Hodgkinson ◽  
Sarah Casey ◽  
John Gleeson ◽  
...  

A major challenge in cartilage tissue engineering (TE) is the development of instructive and biomimetic scaffolds capable of driving effective mesenchymal stem cell (MSC) chondrogenic differentiation and robust de novo...

2007 ◽  
Vol 330-332 ◽  
pp. 1101-1104
Author(s):  
Guo Ping Chen ◽  
Daisuke Akahane ◽  
Naoki Kawazoe ◽  
Yoshio Shirasaki ◽  
M. Tanaka ◽  
...  

A novel collagen sponge that can protect cell leakage during cell seeding was developed by wrapping all the surfaces except the upside of a collagen sponge with membrane that has pores smaller than cell. The collagen sponge was used for three-dimensional culture of human bone marrow-derived mesenchymal stem cells (MSCs). The cells adhered to the collagen, and proliferated to fill the spaces in the sponge. The cell seeding efficiency was higher than 95%. The MSCs cultured in the collagen sponge in the chondrogenic induction medium supplemented with TGF-β3 and BMP6 expressed genes encoding type II collagen, SOX9 and aggrecan. HE staining indicated the round morphology of differentiated cells and the extracelluler matrices were positively stained by safranin O and toluidine blue. Type II collagen and cartilage proteoglycan were detected by immunostaining with anti-type II collagen and anti-cartilage proteoglycan. These results suggest the chondrogenic differentiation of MSCs. The collagen sponge facilitated cell seeding and chondrogenic differentiation of MSCs, and will be useful for cartilage tissue engineering.


2021 ◽  
Vol 57 (4) ◽  
pp. 166-180
Author(s):  
Maria-Minodora Marin ◽  
Madalina Georgiana Albu Kaya ◽  
George Mihail Vlasceanu ◽  
Jana Ghitman ◽  
Ionut Cristian Radu ◽  
...  

Type II collagen has been perceived as the indispensable element and plays a crucial role in cartilage tissue engineering. Thus, materials based on type II collagen have drawn farther attention in both academic and research for developing new systems for the cartilage regeneration. The disadvantage of using type II collagen as a biomaterial for tissue repairing is its reduced biomechanical properties. This can be solved by physical, enzymatic or chemical cross-linking processes, which provide biomaterials with the required mechanical properties for medical applications. To enhance type II collagen properties, crosslinked collagen scaffolds with different cross-linking agents were prepared by freeze-drying technique. The present research work studied the synthesis of type II collagen biomaterials with and without crosslinking agents. Scaffolds morphology was observed by MicroCT, showing in all cases an appropriate microstructure for biological applications, and the mechanical studies were performed using compressive tests. DSC showed an increase in denaturation temperature with an increase in cross-linking agent concentration. FTIR suggested that the secondary structure of collagen is not affected after the cross-linking; supplementary, to confirm the characteristic triple-helix conformation of collagen, the CD investigation was performed. The results showed that the physical-chemical properties of type II collagen were improved by cross-linking treatments.


2021 ◽  
Author(s):  
Anggraini Barlian ◽  
Dinda Hani’ah Arum Saputri ◽  
Adriel Hernando ◽  
Ekavianty Prajatelistia ◽  
Hutomo Tanoto

Abstract Cartilage tissue engineering, particularly micropattern, can influence the biophysical properties of mesenchymal stem cells (MSCs) leading to chondrogenesis. In this research, human Wharton’s jelly MSCs (hWJ-MSCs) were grown on a striped micropattern containing spider silk protein (spidroin) from Argiope appensa. This research aims to direct hWJ-MSCs chondrogenesis using micropattern made of spidroin bioink as opposed to fibronectin that often used as the gold standard. Cells were cultured on striped micropattern of 500 µm and 1000 µm width sizes without chondrogenic differentiation medium for 21 days. The immunocytochemistry result showed that spidroin contains RGD sequences and facilitates cell adhesion via integrin β1. Chondrogenesis was observed through the expression of glycosaminoglycan, type II collagen, and SOX9. The result on glycosaminoglycan content proved that 1000 µm was the optimal width to support chondrogenesis. Spidroin micropattern induced significantly higher expression of SOX9 mRNA on day-21 and SOX9 protein was located inside the nucleus starting from day-7. COL2A1 mRNA of spidroin micropattern groups was downregulated on day-21 and collagen type II protein was detected starting from day-14. These results showed that spidroin micropattern enhances chondrogenic markers while maintains long-term upregulation of SOX9, and therefore has the potential as a new method for cartilage tissue engineering.


2017 ◽  
Vol 23 (1-2) ◽  
pp. 55-68 ◽  
Author(s):  
Henrique V. Almeida ◽  
Binulal N. Sathy ◽  
Ivan Dudurych ◽  
Conor T. Buckley ◽  
Fergal J. O'Brien ◽  
...  

2007 ◽  
Vol 342-343 ◽  
pp. 89-92 ◽  
Author(s):  
Jae Ho Jeong ◽  
Y.M. Moon ◽  
S.O. Kim ◽  
S.S. Yun ◽  
Hong In Shin

Despite many outstanding research works on cartilage tissue engineering, actual clinical application is not quite successful because of the absorption and progressive distortion of tissue engineered cartilage. We have developed a new method of cartilage tissue engineering comprising chondrocyte mixed Pluronic F-127 and cultured chondrocyte cell sheet which entirely cover the cell-Pluronic complex. We believe the addition of cultured chondrocyte cell sheet enhances the efficacy of chondrogenesis in vivo. Human ear cartilage piece was enzymatically dissociated and chondrocyte suspension was acquired. Chondrocytes were cultured and expanded as the routine manner. Cultured chondrocytes were plated in high-density monolayer and cultured with Chondrogenic media in 5% CO2 incubator. After 3 weeks of culture, chondrocyte cell sheet was formed and complete single sheet of chondrocyte could be harvested by gentle manipulation of culture plate with a cell scraper. Chondrocyte-Pluronic complex was established by mixing 1x 106 cells with 0.5 of Pluronic F- 127. Chondrocyte-Pluronic complex was completely covered with a sheet of cultured chondrocyte. The completed tissue engineered constructs were implanted into the subcutaneous tissue pocket of nude mice on the back. Tissue engineered constructs without cultured cell sheet were used as control. Samples were harvested at 8 weeks postoperatively and they were subjected to histological analysis and assayed for glycosaminoglycan (GAG), and type II collagen. Grossly, the size of cartilage specimen of cultured chondrocyte cell sheet covered group was larger than that of the control. On histologic examination, the specimen of cultured chondrocyte cell sheet covered group showed lacunae-containing cells embedded in a basophilic matrix. The chondrocyte cell sheet covered group specimen resembled mature or immature cartilage. The result of measurement of GAG and type II collagen of cartilage specimen of cultured chondrocyte sheet covered group was higher than that of the control. In conclusion, the new method of cartilage tissue engineering using chondrocyte cell sheet seems to be an effective method providing higher cartilage tissue gain and reliable success rate for cartilage tissue engineering.


2008 ◽  
Vol 31 (11) ◽  
pp. 960-969 ◽  
Author(s):  
H.J. Pulkkinen ◽  
V. Tiitu ◽  
P. Valonen ◽  
E.-R. Hämäläinen ◽  
M.J. Lammi ◽  
...  

Purpose Collagen type II is the major component of cartilage and would be an optimal scaffold material for reconstruction of injured cartilage tissue. In this study, the feasibility of recombinant human type II collagen gel as a 3-dimensional culture system for bovine chondrocytes was evaluated in vitro. Methods Bovine chondrocytes (4x106 cells) were seeded within collagen gels and cultivated for up to 4 weeks. The gels were investigated with confocal microscopy, histology, and biochemical assays. Results Confocal microscopy revealed that the cells maintained their viability during the entire cultivation period. The chondrocytes were evenly distributed inside the gels, and the number of cells and the amount of the extracellular matrix increased during cultivation. The chondrocytes maintained their round phenotype during the 4-week cultivation period. The glycosaminoglycan levels of the tissue increased during the experiment. The relative levels of aggrecan and type II collagen mRNA measured with realtime polymerase chain reaction (PCR) showed an increase at 1 week. Conclusion Our results imply that recombinant human type II collagen is a promising biomaterial for cartilage tissue engineering, allowing homogeneous distribution in the gel and biosynthesis of extracellular matrix components.


2015 ◽  
Vol 308 (9) ◽  
pp. C685-C696 ◽  
Author(s):  
Shun-Cheng Wu ◽  
Hsu-Feng Hsiao ◽  
Mei-Ling Ho ◽  
Yung-Li Hung ◽  
Je-Ken Chang ◽  
...  

Effectively directing the chondrogenesis of adipose-derived stem cells (ADSCs) to engineer articular cartilage represents an important challenge in ADSC-based articular cartilage tissue engineering. The discoidin domain receptor 1 (DDR1) has been shown to affect cartilage homeostasis; however, little is known about the roles of DDR1 in ADSC chondrogenesis. In this study, we used the three-dimensional culture pellet culture model system with chondrogenic induction to investigate the roles of DDR1 in the chondrogenic differentiation of human ADSCs (hADSCs). Real-time polymerase chain reaction and Western blot were used to detect the expression of DDRs and chondrogenic genes. Sulfated glycosaminoglycan (sGAG) was detected by Alcian blue and dimethylmethylene blue (DMMB) assays. Terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was used to assess cell death. During the chondrogenesis of hADSCs, the expression of DDR1 but not DDR2 was significantly elevated. The depletion of DDR1 expression in hADSCs using short hairpin RNA increased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and cartilaginous matrix deposition (collagen type II and sGAG) and only slightly increased cell death (2–8%). DDR1 overexpression in hADSCs decreased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and sGAG and enhanced hADSC survival. Moreover, DDR1-depleted hADSCs showed decreased expression of the terminal differentiation genes runt-related transcription factor 2 (Runx2) and matrix metalloproteinase 13 (MMP-13). These results suggest that DDR1 suppression may enhance ADSC chondrogenesis by enhancing the expression of chondrogenic genes and cartilaginous matrix deposition. We proposed that the suppression of DDR1 in ADSCs may be a candidate strategy of genetic modification to optimize ADSC-based articular cartilage tissue engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wenjing Liu ◽  
Haiyun Luo ◽  
Ruolan Wang ◽  
Yiyuan Kang ◽  
Wenting Liao ◽  
...  

Cartilage defects in temporomandibular disorders (TMD) lead to chronic pain and seldom heal. Synovium-derived mesenchymal stem cells (SMSCs) exhibit superior chondrogenesis and have become promising seed cells for cartilage tissue engineering. However, local inflammatory conditions that affect the repair of articular cartilage by SMSCs present a challenge, and the specific mechanism through which the function remains unclear. Thus, it is important to explore the chondrogenesis of SMSCs under inflammatory conditions of TMD such that they can be used more effectively in clinical treatment. In this study, we obtained SMSCs from TMD patients with severe cartilage injuries. In response to stimulation with IL-1β, which is well known as one of the most prevalent cytokines in TMD, MMP13 expression increased, while that of SOX9, aggrecan, and collagen II decreased during chondrogenic differentiation. At the same time, IL-1β upregulated the expression of mTOR and decreased the ratio of LC3-II/LC3-I and the formation of autophagosomes. Further study revealed that rapamycin pretreatment promoted the migration of SMSCs and the expression of chondrogenesis-related markers in the presence of IL-1β by inducing autophagy. 3-Benzyl-5-((2-nitrophenoxy)methyl)-dihydrofuran-2(3H)-one (3BDO), a new activator of mTOR, inhibited autophagy and increased the expression of p-GSK3βser9 and β-catenin, simulating the effect of IL-1β stimulation. Furthermore, rapamycin reduced the expression of mTOR, whereas the promotion of LC3-II/LC3-I was blocked by the GSK3β inhibitor TWS119. Taken together, these results indicate that rapamycin enhances the chondrogenesis of SMSCs by inducing autophagy, and GSK3β may be an important regulator in the process of rapamycin-induced autophagy. Thus, inducing autophagy may be a useful approach in the chondrogenic differentiation of SMSCs in the inflammatory microenvironment and may represent a novel TMD treatment.


2007 ◽  
Vol 15 ◽  
pp. B136
Author(s):  
H.J. Pulkkinen ◽  
V. Tiitu ◽  
P. Valonen ◽  
E. Hämäläinen ◽  
J. Koivurinta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document