Structural features and morphology of titanium dioxide–bismuth vanadate heterojunctions

CrystEngComm ◽  
2021 ◽  
Author(s):  
K. T. Drisya ◽  
M. Edely ◽  
M. Solís-López ◽  
A. Jantrania ◽  
S. Auguste ◽  
...  

Titanium dioxide TiO2 (TO) and bismuth vanadate BiVO4 (BVO) are promising photoactive semiconducting oxides for heterogeneous photocatalysis devoted to water treatment, pollutant degradation and water splitting processes.

2021 ◽  
Author(s):  
Zhouxiang Zhao ◽  
Susanne Reischauer ◽  
Bartholomäus Pieber ◽  
Martina Delbianco

Carbon dots have been immobilized on titanium dioxide to generate photocatalysts for pollutant degradation and water splitting. Here we demonstrate that these nanocomposites are valuable photocatalysts for metallaphotocatalytic carbon-heteroatom cross-couplings....


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1338 ◽  
Author(s):  
Klara Perović ◽  
Francis M. dela Rosa ◽  
Marin Kovačić ◽  
Hrvoje Kušić ◽  
Urška Lavrenčič Štangar ◽  
...  

Clean water and the increased use of renewable energy are considered to be two of the main goals in the effort to achieve a sustainable living environment. The fulfillment of these goals may include the use of solar-driven photocatalytic processes that are found to be quite effective in water purification, as well as hydrogen generation. H2 production by water splitting and photocatalytic degradation of organic pollutants in water both rely on the formation of electron/hole (e−/h+) pairs at a semiconducting material upon its excitation by light with sufficient photon energy. Most of the photocatalytic studies involve the use of TiO2 and well-suited model compounds, either as sacrificial agents or pollutants. However, the wider application of this technology requires the harvesting of a broader spectrum of solar irradiation and the suppression of the recombination of photogenerated charge carriers. These limitations can be overcome by the use of different strategies, among which the focus is put on the creation of heterojunctions with another narrow bandgap semiconductor, which can provide high response in the visible light region. In this review paper, we report the most recent advances in the application of TiO2 based heterojunction (semiconductor-semiconductor) composites for photocatalytic water treatment and water splitting. This review article is subdivided into two major parts, namely Photocatalytic water treatment and Photocatalytic water splitting, to give a thorough examination of all achieved progress. The first part provides an overview on photocatalytic degradation mechanism principles, followed by the most recent applications for photocatalytic degradation and mineralization of contaminants of emerging concern (CEC), such as pharmaceuticals and pesticides with a critical insight into removal mechanism, while the second part focuses on fabrication of TiO2-based heterojunctions with carbon-based materials, transition metal oxides, transition metal chalcogenides, and multiple composites that were made of three or more semiconductor materials for photocatalytic water splitting.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 708
Author(s):  
Clayton Farrugia ◽  
Alessandro Di Mauro ◽  
Frederick Lia ◽  
Edwin Zammit ◽  
Alex Rizzo ◽  
...  

Photocatalysis has long been touted as one of the most promising technologies for environmental remediation. The ability of photocatalysts to degrade a host of different pollutants, especially recalcitrant molecules, is certainly appealing. Titanium dioxide (TiO2) has been used extensively for this purpose. Anodic oxidation allows for the synthesis of a highly ordered nanotubular structure with a high degree of tunability. In this study, a series of TiO2 arrays were synthesised using different electrolytes and different potentials. Mixed anatase-rutile photocatalysts with excellent wettability were achieved with all the experimental iterations. Under UVA light, all the materials showed significant photoactivity towards different organic pollutants. The nanotubes synthesised in the ethylene glycol-based electrolyte exhibited the best performance, with near complete degradation of all the pollutants. The antibacterial activity of this same material was similarly high, with extremely low bacterial survival rates. Increasing the voltage resulted in wider and longer nanotubes, characteristics which increase the level of photocatalytic activity. The ease of synthesis coupled with the excellent activity makes this a viable material that can be used in flat-plate reactors and that is suitable for photocatalytic water treatment.


2021 ◽  
Vol 8 (3) ◽  
pp. 711-722
Author(s):  
Katherine E. Greenstein ◽  
Matthew R. Nagorzanski ◽  
Bailey Kelsay ◽  
Edgard M. Verdugo ◽  
Nosang V. Myung ◽  
...  

Electrospun carbon nanofibers with integrated titanium dioxide nanoparticles are used for water treatment in a photoactive membrane filtration system.


2020 ◽  
Author(s):  
Tchemongo B. Berté ◽  
Anthony S. Chen ◽  
Riya A. Mathew ◽  
Sheyda Shakiba ◽  
Stacey M. Louie

Immobilization of titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) facilitates their removal and reuse in water treatment applications. Composite materials of electrostatically-bound TiO<sub>2</sub> NPs and zeolite particles have been proposed, but limited mechanistic studies are available on their performance in complex media. This study delineates the relative importance of homo- and heteroaggregation, water chemistry, and surface fouling by natural organic matter (NOM) on the photocatalytic degradation of diethyltoluamide (DEET) by TiO<sub>2</sub>-zeolite composites. Zeolite adsorbs a portion of the DEET, rendering it unavailable for degradation; corrections for this adsorption depletion allowed appropriate comparison of the reactivity of the composites to the NPs alone. The TiO<sub>2</sub>-zeolite composites showed enhanced DEET degradation in moderately hard water (MHW) compared to deionized water (DIW), likely attributable to the influence of HCO<sub>3</sub><sup>−</sup>, whereas a net decline in reactivity was observed for the TiO<sub>2</sub> NPs alone upon homoaggregation in MHW. The composites also better maintained reactivity in the presence of NOM in MHW, as removal of Ca<sup>2+</sup> onto the zeolite mitigated fouling of the TiO<sub>2</sub> surface by NOM. However, NOM induced partial dissociation of the composites. DEET byproduct formation, identified by quadrupole–time of flight (QTOF) mass spectrometry, was generally unaffected by the zeolite, while NOM fouling favored de-ethylation over hydroxylation products. Overall, the most significant factor influencing TiO<sub>2</sub> reactivity toward DEET was NOM adsorption, followed by homoaggregation, electrolytes (here, MHW versus DIW), and heteroaggregation. These findings can inform a better understanding of NP reactivity in engineered water treatment applications.


2021 ◽  
Vol 1 (1) ◽  
pp. 26-35
Author(s):  
Chin Wei Lai ◽  
Jenny Hui Foong Chau

Hydrogen (H2) has proved itself as a viable future energy carrier and alternative for fossil fuel in terms of ensuring a clean and sustainable energy supply. However, H2 must be made available at a lower cost so that everyone can benefit from it and prevent causing a worldwide ecological imbalance. The usage of photoelectrochemical water splitting (PEC) technology by using TiO2 photocatalyst can produce H2 using renewable solar energy. The essential milestones, as well as the mechanism in PEC H2 generation, are discussed in this article.


Sign in / Sign up

Export Citation Format

Share Document