scholarly journals Dissociation of HCl in water nanoclusters: An energy decomposition analysis perspective

Author(s):  
Alexander Zech ◽  
Martin Head-Gordon

As known, small HCl-water nanoclusters display a particular dissociation behaviour, whereby at least four water molecules are required for the ionic dissociation of HCl. In this work, we examine how...

2020 ◽  
Vol 22 (19) ◽  
pp. 10397-10411 ◽  
Author(s):  
Hossam Elgabarty ◽  
Thomas D. Kühne

Ab initio molecular dynamics simulations of ambient liquid water and energy decomposition analysis have recently shown that water molecules exhibit significant asymmetry between the strengths of the two donor and/or the two acceptor interactions.


2020 ◽  
Author(s):  
Paul Clabaut ◽  
Ruben Staub ◽  
Joachim Galiana ◽  
Elise Antonetti ◽  
Stephan Steinmann

Water molecules adsorbed on noble metal surfaces are of fundamental interest in surface science, heterogeneous catalysis and as a model for the metal/water interface. Herein, we analyse 27 water structures adsorbed on five noble metal surfaces (Cu, Ag, Au, Pd, Pt) via density functional theory and energy decomposition analysis based on the block localized wave function technique. The structures, ranging from the monomers to ice adlayers, reveal that the charge-transfer from water to the surface is nearly independent from the charge-transfer between the water molecules, while the polarization energies are cooperative. Dense water-water networks with small surface dipoles, such as the sqrt(39) x sqrt(39) unit cell (experimentally observed on Pt(111) ) are favored compared to the highly ordered and popular H<sup>up</sup> and H<sup>down</sup> phases. The second main result of our study is that the many-body interactions, which stabilize the water assemblies on the metal surfaces, are dominated by the polarization energies, with the charge-transfer scaling with the polarization energies. Hence, if an empirical model could be found that reproduces the polarization energies, the charge-transfer could be predicted as well, opening exciting perspectives for force field development.


2020 ◽  
Author(s):  
Paul Clabaut ◽  
Ruben Staub ◽  
Joachim Galiana ◽  
Elise Antonetti ◽  
Stephan Steinmann

Water molecules adsorbed on noble metal surfaces are of fundamental interest in surface science, heterogeneous catalysis and as a model for the metal/water interface. Herein, we analyse 27 water structures adsorbed on five noble metal surfaces (Cu, Ag, Au, Pd, Pt) via density functional theory and energy decomposition analysis based on the block localized wave function technique. The structures, ranging from the monomers to ice adlayers, reveal that the charge-transfer from water to the surface is nearly independent from the charge-transfer between the water molecules, while the polarization energies are cooperative. Dense water-water networks with small surface dipoles, such as the sqrt(39) x sqrt(39) unit cell (experimentally observed on Pt(111) ) are favored compared to the highly ordered and popular H<sup>up</sup> and H<sup>down</sup> phases. The second main result of our study is that the many-body interactions, which stabilize the water assemblies on the metal surfaces, are dominated by the polarization energies, with the charge-transfer scaling with the polarization energies. Hence, if an empirical model could be found that reproduces the polarization energies, the charge-transfer could be predicted as well, opening exciting perspectives for force field development.


2015 ◽  
Vol 11 ◽  
pp. 2727-2736 ◽  
Author(s):  
Diego M Andrada ◽  
Nicole Holzmann ◽  
Thomas Hamadi ◽  
Gernot Frenking

Fifteen cyclic and acylic carbenes have been calculated with density functional theory at the BP86/def2-TZVPP level. The strength of the internal X→p(π) π-donation of heteroatoms and carbon which are bonded to the C(II) atom is estimated with the help of NBO calculations and with an energy decomposition analysis. The investigated molecules include N-heterocyclic carbenes (NHCs), the cyclic alkyl(amino)carbene (cAAC), mesoionic carbenes and ylide-stabilized carbenes. The bonding analysis suggests that the carbene centre in cAAC and in diamidocarbene have the weakest X→p(π) π-donation while mesoionic carbenes possess the strongest π-donation.


2021 ◽  
Vol 23 (36) ◽  
pp. 20533-20540
Author(s):  
Gustavo Cárdenas ◽  
Álvaro Pérez-Barcia ◽  
Marcos Mandado ◽  
Juan J. Nogueira

The interactions that control the permeation of cisplatin through a DOPC bilayer are unveiled by a QM/MM EDA scheme.


Author(s):  
Zhen Tang ◽  
Yanlin Song ◽  
Shu Zhang ◽  
Wei Wang ◽  
Yuan Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document