Computational study of the staircase molecular conductivity of polyoxovanadates adsorbed on Au(111)

2021 ◽  
Vol 50 (16) ◽  
pp. 5540-5551
Author(s):  
Almudena Notario-Estévez ◽  
Xavier López ◽  
Coen de Graaf

This computational study presents the molecular conduction properties of polyoxovanadates V6O19 (Lindqvist-type) and V18O42, as possible successors of the materials currently in use in complementary metal–oxide semiconductor (CMOS) technology.

1998 ◽  
Vol 37 (Part 1, No. 3B) ◽  
pp. 1050-1053 ◽  
Author(s):  
Masayasu Miyake ◽  
Toshio Kobayashi ◽  
Yutaka Sakakibara ◽  
Kimiyoshi Deguchi ◽  
Mitsutoshi Takahashi

2021 ◽  
Author(s):  
Kamal Y. Kamal ◽  
Radu Muresan ◽  
Arafat Al-Dweik

<p>This article reviews complementary metal-oxide-semiconductor (CMOS) based physically unclonable functions (PUFs) in terms of types, structures, metrics, and challenges. The article reviews and classifies the most basic PUF types. The article reviews the basic variations originated during a metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process. Random <a>variations</a> at transistor level lead to acquiring unique properties for electronic chips. These variations help a PUF system to generate a unique response. This article discusses various concepts which allow for more variations at CMOS technology, layout, masking, and design levels. It also discusses various PUF related topics.</p>


2021 ◽  
Vol 2108 (1) ◽  
pp. 012034
Author(s):  
Haoran Xu ◽  
Jianghua Ding ◽  
Jian Dang

Abstract Known as complementary symmetrical metal oxide semiconductor (cos-mos), complementary metal oxide semiconductor is a metal oxide semiconductor field effect transistor (MOSFET) manufacturing process, which uses complementary and symmetrical pairs of p-type and n-type MOSFETs to realize logic functions. CMOS technology is used to build integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips (including CMOS BIOS) and other digital logic circuits. CMOS technology is also used in analog circuits, such as image sensors (CMOS sensors), data converters, RF circuits (RF CMOS), and highly integrated transceivers for various types of communications. Based on multisim 14.0 and cadence, the characteristics and performance of CMOS inverter are studied by simulation.


1989 ◽  
Vol 67 (4) ◽  
pp. 184-189 ◽  
Author(s):  
M. Parameswaran ◽  
Lj. Ristic ◽  
A. C. Dhaded ◽  
H. P. Baltes ◽  
W. Allegretto ◽  
...  

Complementary metal oxide semiconductor (CMOS) technology is one of the leading fabrication technologies of the semiconductor integrated-circuit industry. We have discovered features inherent in the standard CMOS fabrication process that lend themselves to the manufacturing of micromechanical structures for sensor applications. In this paper we present an unconventional layout design methodology that allows us to exploit the standard CMOS process for producing microbridges. Two types of microbridges, bare polysilicon microbridges and sandwiched oxide microbridges, have been manufactured by first implementing a special layout design in an industrial digital CMOS process, followed by a postprocessing etching step.


2013 ◽  
Vol 2013 (9) ◽  
pp. 45-47 ◽  
Author(s):  
N. Wakama ◽  
D. Okabayashi ◽  
T. Noda ◽  
K. Sasagawa ◽  
T. Tokuda ◽  
...  

1987 ◽  
Vol 65 (8) ◽  
pp. 1003-1008
Author(s):  
P. Kempf ◽  
R. Hadaway ◽  
J. Kolk

The purpose of this work was to study the implementation of high-voltage transistors using standard 3–5 μm complementary metal oxide semiconductor (CMOS) technology with a minimum of additional photolithographic or implant steps. A fabrication process was designed to accommodate a variety of high-voltage transistors with greater than 450 V breakdown voltage and low-voltage CMOS. Extensive use was made of a two-dimensional device model and a one-dimensional process model to determine suitable process parameters. The necessary conditions to produce a high-voltage double-diffused metal oxide semiconductor (DMOS) structure, as well as both n-well and p-well regions for CMOS transistors, and a thick gate oxide required to sustain the full blocking voltage were the main determinants of the process flow. Lateral DMOS (LDMOS), vertical DMOS (VDMOS), conductivity modulated FET (COMFET), and MOS triac (TRIMOS) devices were fabricated on the same chip as standard CMOS transistors using the developed fabrication sequence. This paper includes the results of the process modelling, device design, and electrical measurements.


2021 ◽  
Author(s):  
Kamal Y. Kamal ◽  
Radu Muresan ◽  
Arafat Al-Dweik

<p>This article reviews complementary metal-oxide-semiconductor (CMOS) based physically unclonable functions (PUFs) in terms of types, structures, metrics, and challenges. The article reviews and classifies the most basic PUF types. The article reviews the basic variations originated during a metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process. Random <a>variations</a> at transistor level lead to acquiring unique properties for electronic chips. These variations help a PUF system to generate a unique response. This article discusses various concepts which allow for more variations at CMOS technology, layout, masking, and design levels. It also discusses various PUF related topics.</p>


Author(s):  
Ruo-Si Chen ◽  
Guang-Long Ding ◽  
Ye Zhou ◽  
Su-Ting Han

Recently, mainstream silicon (Si)-based materials and complementary metal oxide semiconductor (CMOS) technology have been developed to an extremely tiny size of a few nanometers. However, with the reduction of transistor...


Sign in / Sign up

Export Citation Format

Share Document