Synthesis and DNA interaction studies of Ru(ii) cell penetrating peptide (CPP) bioconjugates

2021 ◽  
Author(s):  
Daniel Obitz ◽  
Reece G. Miller ◽  
Nils Metzler-Nolte

The synthesis and biological investigations of the first bioconjugates of ruthenium(ii) dipyridophenazine complexes with two different covalently attached cell penetrating peptides (CPPs) is described.

2019 ◽  
Vol 7 (4) ◽  
pp. 1493-1506 ◽  
Author(s):  
Feng Guo ◽  
Ting Ouyang ◽  
Taoxing Peng ◽  
Xiuying Zhang ◽  
Baogang Xie ◽  
...  

In this study, amphipathic chitosan derivative (ACS) and cell-penetrating peptide (CPP) co-modified colon-specific nanoparticles (CS-CPP NPs) were prepared and evaluated.


2015 ◽  
Vol 35 (2) ◽  
Author(s):  
Hua Li ◽  
Jiwen He ◽  
Huimin Yi ◽  
Guoan Xiang ◽  
Kaiyun Chen ◽  
...  

In the present study, we delivered human telomerase reverse transcriptase (hTERT) siRNA into SMMC-7721 hepatoma cells using a matrix metalloproteinase-2 (MMP2)-activatable cell-penetrating peptide (aCPP). The siRNA subsequently induced down-regulation of the hTERT gene and G1-arrest, implicating the utility of this delivery system in cancer therapy.


RSC Advances ◽  
2021 ◽  
Vol 11 (57) ◽  
pp. 36116-36124
Author(s):  
Omar Paulino da Silva Filho ◽  
Muhanad Ali ◽  
Rike Nabbefeld ◽  
Daniel Primavessy ◽  
Petra H. Bovee-Geurts ◽  
...  

Noncovalent functionalization with acylated cell-penetrating peptides achieves an efficient cellular uptake of PLGA and PEG-PLGA nanoparticles.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 727 ◽  
Author(s):  
Perche

The integration of drugs into nanocarriers favorably altered their pharmacodynamics and pharmacokinetics compared to free drugs, and increased their therapeutic index. However, selective cellular internalization in diseased tissues rather than normal tissues still presents a formidable challenge. In this chapter I will cover solutions involving environment-responsive cell-penetrating peptides (CPPs). I will discuss properties of CPPs as universal cellular uptake enhancers, and the modifications imparted to CPP-modified nanocarriers to confine CPP activation to diseased tissues.


2007 ◽  
Vol 35 (4) ◽  
pp. 775-779 ◽  
Author(s):  
R. Abes ◽  
A.A. Arzumanov ◽  
H.M. Moulton ◽  
S. Abes ◽  
G.D. Ivanova ◽  
...  

Cationic CPPs (cell-penetrating peptides) have been used largely for intracellular delivery of low-molecular-mass drugs, biomolecules and particles. Most cationic CPPs bind to cell-associated glycosaminoglycans and are internalized by endocytosis, although the detailed mechanisms involved remain controversial. Sequestration and degradation in endocytic vesicles severely limits the efficiency of cytoplasmic and/or nuclear delivery of CPP-conjugated material. Re-routing the splicing machinery by using steric-block ON (oligonucleotide) analogues, such as PNAs (peptide nucleic acids) or PMOs (phosphorodiamidate morpholino oligomers), has consequently been inefficient when ONs are conjugated with standard CPPs such as Tat (transactivator of transcription), R9 (nona-arginine), K8 (octalysine) or penetratin in the absence of endosomolytic agents. New arginine-rich CPPs such as (R-Ahx-R)4 (6-aminohexanoic acid-spaced oligo-arginine) or R6 (hexa-arginine)–penetratin conjugated to PMO or PNA resulted in efficient splicing correction at non-cytotoxic doses in the absence of chloroquine. SAR (structure–activity relationship) analyses are underway to optimize these peptide delivery vectors and to understand their mechanisms of cellular internalization.


RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24084-24093 ◽  
Author(s):  
Qi Zhang ◽  
Jing Wang ◽  
Hao Zhang ◽  
Dan Liu ◽  
Linlin Ming ◽  
...  

Hydrophobic cell penetrating peptide PFVYLI-modified liposomes have been developed for the targeted delivery of PTX into tumors.


2014 ◽  
Vol 50 (55) ◽  
pp. 7254-7257 ◽  
Author(s):  
Gabriela A. Eggimann ◽  
Emilyne Blattes ◽  
Stefanie Buschor ◽  
Rasomoy Biswas ◽  
Stephan M. Kammer ◽  
...  

Redesigning linear cell penetrating peptides (CPPs) into a multi-branched topology with short dipeptide branches gave cell penetrating peptide dendrimers (CPPDs) with higher cell penetration, lower toxicity and hemolysis and higher serum stability than linear CPPs.


2019 ◽  
Vol 55 (93) ◽  
pp. 13955-13958 ◽  
Author(s):  
Ikuhiko Nakase ◽  
Miku Katayama ◽  
Yoshihide Hattori ◽  
Miki Ishimura ◽  
Shunsuke Inaura ◽  
...  

Boron neutron capture therapy (BNCT) technology using cell-penetrating peptides (CPPs) for enhanced cellular uptake of boron compounds and their controlled localization inside cells.


2005 ◽  
Vol 390 (2) ◽  
pp. 603-612 ◽  
Author(s):  
Miguel Mano ◽  
Cristina Teodósio ◽  
Artur Paiva ◽  
Sérgio Simões ◽  
Maria C. Pedroso de Lima

Cell-penetrating peptides have been shown to translocate across eukaryotic cell membranes through a temperature-insensitive and energy-independent mechanism that does not involve membrane receptors or transporters. Although cell-penetrating peptides have been successfully used to mediate the intracellular delivery of a wide variety of molecules of pharmacological interest both in vitro and in vivo, the mechanisms by which cellular uptake occurs remain unclear. In the face of recent reports demonstrating that uptake of cell-penetrating peptides occurs through previously described endocytic pathways, or is a consequence of fixation artifacts, we conducted a critical re-evaluation of the mechanism responsible for the cellular uptake of the S413-PV karyophilic cell-penetrating peptide. We report that the S413-PV peptide is able to accumulate inside live cells very efficiently through a rapid, dose-dependent and non-toxic process, providing clear evidence that the cellular uptake of this peptide cannot be attributed to fixation artifacts. Comparative analysis of peptide uptake into mutant cells lacking heparan sulphate proteoglycans demonstrates that their presence at the cell surface facilitates the cellular uptake of the S413-PV peptide, particularly at low peptide concentrations. Most importantly, our results clearly demonstrate that, in addition to endocytosis, which is only evident at low peptide concentrations, the efficient cellular uptake of the S413-PV cell-penetrating peptide occurs mainly through an alternative, non-endocytic mechanism, most likely involving direct penetration across cell membranes.


Sign in / Sign up

Export Citation Format

Share Document