Untangling Respective Effects of Heteroatom-doped Carbon Materials in Batteries, Supercapacitors and ORR to Design High-Performance Materials

Author(s):  
Xin Feng ◽  
Ying Bai ◽  
Mingquan Liu ◽  
Ying Li ◽  
Haoyi Yang ◽  
...  

Heteroatom-doped carbon materials (HDCMs) have been widely studied as one of the most prominent material candidates for a wide range of applications, such as batteries, supercapacitors (SCs) and ORR. In...

MRS Bulletin ◽  
1994 ◽  
Vol 19 (11) ◽  
pp. 39-42 ◽  
Author(s):  
D. Ugarte

Pure carbon materials, graphite and diamond, possess a wide array of interesting physical properties, and so attract a large spectra of interests and applications. Carbon microparticles (carbon black) and carbon fibers are widely used in practical applications including common materials (paints, inks, polymers, etc.) and high-performance composite materials.Carbon displays a remarkably rich and complex chemical behavior (three different possible hybridizations: sp1, sp2, and sp3). In particular, the covalent carboncarbon bond is one of the strongest in nature, and induces a high melting temperature (> 4000°C). The phase changes associated with unusually high temperatures and pressures as revealed in the carbon phase diagram, and the fact that the solid sublimates at low pressures before melting, lead to many experimental difficulties in the study of high-temperature properties of carbon materials. Experiments must therefore rely on transient melting, for example, laser vaporization or arc-discharge heating. This explains why fullerenes and related graphitic structures have only recently been discovered.From a fundamental point of view, the discovery of fullerenes has introduced new ideas about how carbon atoms bond. The curvature and closure of graphitic surfaces has become a standard concept in carbon chemistry, and recently a wide range of structures formed by curved graphitic networks has been observed. A surprising aspect of fullerene research is that these novel graphitic structures were found in well-known experiments, and that they had been overlooked for so many years.This article will describe recent progress in the generation and physical characterization of graphitic nanoparticles, or multishell fullerenes. The lack of an efficient method for producing, as well as a method for purifying these particles makes it difficult to characterize them and to develop possible applications.


2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


Author(s):  
Junshuang Zhou ◽  
Kuo Wei ◽  
Lina Tian ◽  
Zhuoran Hao ◽  
Ying Bian ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8628-8635
Author(s):  
Chang Ki Kim ◽  
Jung-Min Ji ◽  
M. Aftabuzzaman ◽  
Hwan Kyu Kim

The incorporation of the Te element into nitrogen-doped carbon-based nanomaterials is a good strategy to improve the capacitive performance of carbon materials and the incorporation of two types of atoms improves the overall capacitive performance of the materials due to a synergetic effect.


Sign in / Sign up

Export Citation Format

Share Document