Esterification catalyzed by efficient solid acid synthesized from PTSA and UiO–66(Zr) for biodiesel production

2021 ◽  
Author(s):  
Hui Li ◽  
Zhihao Han ◽  
Fengsheng Liu ◽  
Guoning Li ◽  
Min Guo ◽  
...  

P–toluenesulfonic acid (PTSA) is a typical homogeneous acid for biodiesel production. Due to the shortcomings of high deliquescence and non–recyclability, it is necessary to synthesize the recyclable solid acid. For...

Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


2013 ◽  
Vol 19 (4) ◽  
pp. 1413-1419 ◽  
Author(s):  
Rizwan Sheikh ◽  
Moo-Seok Choi ◽  
Jun-Seop Im ◽  
Yeung-Ho Park

2018 ◽  
Vol 156 ◽  
pp. 03002
Author(s):  
Iwan Ridwan ◽  
Mukhtar Ghazali ◽  
Adi Kusmayadi ◽  
Resza Diwansyah Putra ◽  
Nina Marlina ◽  
...  

The oleic acid solubility in methanol is low due to two phase separation, and this causes a slow reaction time in biodiesel production. Tetrahydrofuran as co-solvent can decrease the interfacial surface tension between methanol and oleic acid. The objective of this study was to investigate the effect of co-solvent, methanol to oleic acid molar ratio, catalyst amount, and temperature of the reaction to the free fatty acid conversion. Oleic acid esterification was conducted by mixing oleic acid, methanol, tetrahydrofuran and Amberlyst 15 as a solid acid catalyst in a batch reactor. The Amberlyst 15 used had an exchange capacity of 2.57 meq/g. Significant free fatty acid conversion increments occur on biodiesel production using co-solvent compared without co-solvent. The highest free fatty acid conversion was obtained over methanol to the oleic acid molar ratio of 25:1, catalyst use of 10%, the co-solvent concentration of 8%, and a reaction temperature of 60°C. The highest FFA conversion was found at 28.6 %, and the steady state was reached after 60 minutes. In addition, the use of Amberlyst 15 oleic acid esterification shows an excellent performance as a solid acid catalyst. Catalytic activity was maintained after 4 times repeated use and reduced slightly in the fifth use.


2006 ◽  
Vol 8 (12) ◽  
pp. 1056 ◽  
Author(s):  
Mangesh G. Kulkarni ◽  
Rajesh Gopinath ◽  
Lekha Charan Meher ◽  
Ajay Kumar Dalai

Author(s):  
Alex H West ◽  
Dusko Posarac ◽  
Naoko Ellis

A commercial process simulator was used to develop a detailed simulation of a biodiesel production process, and carry out case studies and optimization. The simulated process produced biodiesel from a feedstock containing 5 wt.% free fatty acids in a fixed-bed reactor with sulfated-zirconia as an acidic catalyst. Sized unit operation blocks, material and energy flows were used to conduct an economic assessment of the process. Total capital investment, total manufacturing cost, after tax rate-of-return and production cost ($/kg) were all determined for the process. The process was then optimized by maximizing the after tax rate-of-return (ATROR). Based on our previous work, the most economical process for transesterification of waste vegetable oil at the scale of 8000 metric tones/yr of biodiesel production among the four processes examined was based on a solid acid catalyst reaction. Our results showed that the process is economically feasible, even without government subsidy, while at the same time, the produced biodiesel met the required ASTM standard for purity.


2014 ◽  
Vol 16 (6) ◽  
pp. 2934-2957 ◽  
Author(s):  
Fang Su ◽  
Yihang Guo

Recent advancements in biodiesel synthesis catalyzed by solid acids, particularly novel hybrid organic–inorganic solid acids, are reviewed.


Sign in / Sign up

Export Citation Format

Share Document