Toxic effects of copper on jejunum and colon of pigs: mechanisms related to gut barrier dysfunction and inflammation influenced by gut microbiota

2021 ◽  
Author(s):  
Jianzhao Liao ◽  
Quanwei Li ◽  
Chaiqin Lei ◽  
Wenlan Yu ◽  
Jichang Deng ◽  
...  

Copper (Cu) is an essential trace mineral, but the excessive intake can lead to potentially toxic effects on host physiology. The mammalian intestine harbors various microorganisms, which are associated with intestinal...

Nanoscale ◽  
2021 ◽  
Author(s):  
Jiyan Qiao ◽  
Rui Chen ◽  
Mengjie Wang ◽  
Ru Bai ◽  
Xuejing Cui ◽  
...  

Exposure to micro/nanoplastics (M/NPLs) deteriorates the intestinal barrier by disturbing the bacterial composition in the gut.


2021 ◽  
Author(s):  
Chengcheng Yang ◽  
Yao Du ◽  
Daoyuan Ren ◽  
Xingbin Yang ◽  
Yan Zhao

Gut barrier dysfunction is triggered by gut microbiota dysbiosis that is closely associated with ulcerative colitis. Here, we first studied the prophylactic capacity of turmeric polysaccharides (TPS) to ameliorate dextran...


2021 ◽  
Author(s):  
Beate Vestad ◽  
Thor Ueland ◽  
Tori Vigeland Lerum ◽  
Tuva B Dahl ◽  
Kristian Holm ◽  
...  

Objective: Although COVID-19 is primarily a respiratory infection, mounting evidence suggests that the GI tract is involved in the disease, with gut barrier dysfunction and gut microbiota alterations being related to disease severity. Whether these alterations persist and could be related to long-term respiratory dysfunction is unknown. Design: From the NOR-Solidarity trial (n=181), plasma was collected during hospital admission and after three months, and analyzed for markers of gut barrier dysfunction and inflammation. At the three-month follow-up, pulmonary function was assessed by measuring diffusing capacity of the lungs for carbon monoxide (DLCO), and rectal swabs for gut microbiota analyses were collected (n= 97) and analysed by sequencing of the 16S rRNA gene. Results: Gut microbiota diversity was reduced in COVID-19 patients with persistent respiratory dysfunction, defined as DLCO below lower limit of normal three months after hospitalization. These patients also had an altered global gut microbiota composition, with reduced abundance of Erysipelotrichaceae UCG-003 and increased abundance of Flavonifractor and Veillonella, the latter potentially being linked to fibrosis. During hospitalization, increased plasma levels of lipopolysaccharide-binding protein (LBP) were strongly associated with respiratory failure, defined as pO2/fiO2-(P/F-ratio)<26.6 kPa. LBP levels remained elevated during and after hospitalization, and was associated with low-grade inflammation and persistent respiratory dysfunction after three months. Conclusion: Persistent respiratory dysfunction after COVID-19 is associated with reduced biodiversity and gut microbiota alterations, along with persistently elevated LBP levels. Our results point to a potential gut-lung axis that should be further investigated in relation to long-term pulmonary dysfunction and long COVID.


2021 ◽  
Author(s):  
Aoxiang Zhuge ◽  
Shengjie Li ◽  
Yin Yuan ◽  
Bo Li ◽  
Lanjuan Li

L. salivarius LI01 and B. longum TC01 synergize in liver injury via altering gut microbiota and protecting gut barrier.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2124
Author(s):  
Se-Young Park ◽  
Byeong-Oh Hwang ◽  
Mihwa Lim ◽  
Seung-Ho Ok ◽  
Sun-Kyoung Lee ◽  
...  

It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.


Sign in / Sign up

Export Citation Format

Share Document