scholarly journals Gut microbiota alterations in patients with persistent respiratory dysfunction three months after severe COVID-19

Author(s):  
Beate Vestad ◽  
Thor Ueland ◽  
Tori Vigeland Lerum ◽  
Tuva B Dahl ◽  
Kristian Holm ◽  
...  

Objective: Although COVID-19 is primarily a respiratory infection, mounting evidence suggests that the GI tract is involved in the disease, with gut barrier dysfunction and gut microbiota alterations being related to disease severity. Whether these alterations persist and could be related to long-term respiratory dysfunction is unknown. Design: From the NOR-Solidarity trial (n=181), plasma was collected during hospital admission and after three months, and analyzed for markers of gut barrier dysfunction and inflammation. At the three-month follow-up, pulmonary function was assessed by measuring diffusing capacity of the lungs for carbon monoxide (DLCO), and rectal swabs for gut microbiota analyses were collected (n= 97) and analysed by sequencing of the 16S rRNA gene. Results: Gut microbiota diversity was reduced in COVID-19 patients with persistent respiratory dysfunction, defined as DLCO below lower limit of normal three months after hospitalization. These patients also had an altered global gut microbiota composition, with reduced abundance of Erysipelotrichaceae UCG-003 and increased abundance of Flavonifractor and Veillonella, the latter potentially being linked to fibrosis. During hospitalization, increased plasma levels of lipopolysaccharide-binding protein (LBP) were strongly associated with respiratory failure, defined as pO2/fiO2-(P/F-ratio)<26.6 kPa. LBP levels remained elevated during and after hospitalization, and was associated with low-grade inflammation and persistent respiratory dysfunction after three months. Conclusion: Persistent respiratory dysfunction after COVID-19 is associated with reduced biodiversity and gut microbiota alterations, along with persistently elevated LBP levels. Our results point to a potential gut-lung axis that should be further investigated in relation to long-term pulmonary dysfunction and long COVID.

2017 ◽  
Vol 118 (5) ◽  
pp. 343-352 ◽  
Author(s):  
Henna Röytiö ◽  
Kati Mokkala ◽  
Tero Vahlberg ◽  
Kirsi Laitinen

AbstractThe diet–microbiota–metabolism relationships during pregnancy are mostly unknown. We explored the effect of the habitual diet and adherence to the dietary reference values on gut microbiota composition and diversity. Further, the association of gut microbiota with serum lipidomics and low-grade inflammation was evaluated. Overweight and obese women (BMI 30·7 (sd4·4) kg/m2,n100) were studied at early pregnancy (≤17 weeks). Intakes of nutrients were calculated from 3-d food diaries. Faecal microbiota composition was analysed using 16S rRNA gene sequencing. Fasting serum lipidomic profiles were determined by NMR. High-sensitivity C-reactive protein, glycoprotein acetylation (GlycA) and lipopolysaccharide activity were used as markers for low-grade inflammation. The recommended dietary intake of fibre and fat was related to higher gut microbiota richness and lower abundance of Bacteroidaceae. Correlations were observed between gut microbiota richness and GlycA and between a few microbiota genera and serum lipoprotein particles. As a conclusion, adherence to the dietary reference intake of fat and fibre was associated with beneficial gut microbiota composition, which again contributed to lipidomic profile. Higher gut microbiota richness and nutrient intakes were linked to a lower level of low-grade inflammation marker GlycA. This finding offers novel insights and opportunities for dietary modification during pregnancy with potential of improving the health of the mother and the child.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Chao Kang ◽  
Bin Wang ◽  
Kanakaraju Kaliannan ◽  
Xiaolan Wang ◽  
Hedong Lang ◽  
...  

ABSTRACT Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation. IMPORTANCE Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP. Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Simona Mihai ◽  
Elena Codrici ◽  
Ionela Daniela Popescu ◽  
Ana-Maria Enciu ◽  
Lucian Albulescu ◽  
...  

Persistent, low-grade inflammation is now considered a hallmark feature of chronic kidney disease (CKD), being involved in the development of all-cause mortality of these patients. Although substantial improvements have been made in clinical care, CKD remains a major public health burden, affecting 10–15% of the population, and its prevalence is constantly growing. Due to its insidious nature, CKD is rarely diagnosed in early stages, and once developed, its progression is unfortunately irreversible. There are many factors that contribute to the setting of the inflammatory status in CKD, including increased production of proinflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, altered metabolism of adipose tissue, and last but not least, gut microbiota dysbiosis, an underestimated source of microinflammation. In this scenario, a huge step forward was made by the increasing progression of omics approaches, specially designed for identification of biomarkers useful for early diagnostic and follow-up. Recent omics advances could provide novel insights in deciphering the disease pathophysiology; thus, identification of circulating biomarker panels using state-of-the-art proteomic technologies could improve CKD early diagnosis, monitoring, and prognostics. This review aims to summarize the recent knowledge regarding the relationship between inflammation and CKD, highlighting the current proteomic approaches, as well as the inflammasomes and gut microbiota dysbiosis involvement in the setting of CKD, culminating with the troubling bidirectional connection between CKD and renal malignancy, raised on the background of an inflammatory condition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Severine P. Parois ◽  
Susan D. Eicher ◽  
Stephen R. Lindemann ◽  
Jeremy N. Marchant

AbstractThe influence of feed supplements on behavior and memory has been recently studied in livestock. The objectives of the study were to evaluate the effects of a synbiotic on: an episodic-like (SOR: Spontaneous Object Recognition), a working (BARR: Fence barrier task), a long-term (TMAZE: Spatial T-maze task) memory test and on gut microbiota composition. Eighteen female piglets were supplemented from 1 to 28 days of age with a synbiotic (SYN), while 17 served as control (CTL). Feces were collected on days 16, 33 and 41 for 16S rRNA gene composition analyses. In the SOR, SYN piglets interacted more quickly with the novel object than CTL piglets. In the BARR, SYN piglets had shorter distances to finish the test in trial 3. In the TMAZE, SYN piglets were quicker to succeed on specific days and tended to try the new rewarded arm earlier during the reversal stage. Difference of microbiota composition between treatments was nonexistent on D16, a tendency on D33 and significant on D41. The synbiotic supplement may confer memory advantages in different cognitive tasks, regardless of the nature of the reward and the memory request. Difference in memory abilities can potentially be explained by differences in microbiota composition.


2020 ◽  
Author(s):  
Marion Régnier ◽  
Matthias Van Hul ◽  
Claude Knauf ◽  
Patrice D Cani

Overweight and obesity are associated with several cardiometabolic risk factors, including insulin resistance, type 2 diabetes, low-grade inflammation and liver diseases. The gut microbiota is a potential contributing factor regulating energy balance. However, although the scientific community acknowledges that the gut microbiota composition and its activity (e.g., production of metabolites and immune-related compounds) are different between healthy subjects and subjects with overweight/obesity, the causality remains insufficiently demonstrated. The development of low-grade inflammation and related metabolic disorders has been connected with metabolic endotoxaemia and increased gut permeability. However, the mechanisms acting on the regulation of the gut barrier and eventually cardiometabolic disorders are not fully elucidated. In this review, we debate several characteristics of the gut microbiota, gut barrier function and metabolic outcomes. We examine the role of specific dietary compounds or nutrients (e.g., prebiotics, probiotics, polyphenols, sweeteners, and a fructose-rich diet) as well as different metabolites produced by the microbiota in host metabolism, and we discuss how they control several endocrine functions and eventually have either beneficial or deleterious effects on host health.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1792
Author(s):  
Alicia Huazano-García ◽  
María Blanca Silva-Adame ◽  
Juan Vázquez-Martínez ◽  
Argel Gastelum-Arellanez ◽  
Lino Sánchez-Segura ◽  
...  

Highly branched neo-fructans (agavins) are natural prebiotics found in Agave plants, with a large capacity to mitigate the development of obesity and metabolic syndrome. Here, we investigated the impact of agavins intake on gut microbiota modulation and their metabolites as well as their effect on metabolic endotoxemia and low-grade inflammation in mice fed high-fat diet. Mice were fed with a standard diet (ST) and high-fat diet (HF) alone or plus an agavins supplement (HF+A) for ten weeks. Gut microbiota composition, fecal metabolite profiles, lipopolysaccharides (LPS), pro-inflammatory cytokines, and systemic effects were analyzed. Agavins intake induced substantial changes in gut microbiota composition, enriching Bacteroides, Parabacteroides, Prevotella, Allobaculum, and Akkermansia genus (LDA > 3.0). l-leucine, l-valine, uracil, thymine, and some fatty acids were identified as possible biomarkers for this prebiotic supplement. As novel findings, agavins supplementation significantly decreased LPS and pro-inflammatory (IL-1α, IL-1β, and TNF-α; p < 0.05) cytokines levels in portal vein. In addition, lipid droplets content in the liver and adipocytes size also decreased with agavins consumption. In conclusion, agavins supplementation mitigate metabolic endotoxemia and low-grade inflammation in association with gut microbiota regulation and their metabolic products, thus inducing beneficial responses on metabolic disorders in high-fat diet-fed mice.


2021 ◽  
Author(s):  
Anne Lautenbach ◽  
Fabian Stoll ◽  
Oliver Mann ◽  
Philipp Busch ◽  
Tobias B. Huber ◽  
...  

Abstract Purpose Bariatric surgery (BS) was shown to improve inflammatory markers in previous short-term follow-up studies. The aim of the present study was to assess the long-term effects of BS on chronic low-grade inflammation markers related to severe obesity. Moreover, the meaning of the type of BS procedure as well as the remission of type 2 diabetes (T2D) for inflammatory status up to 4 years after BS was analyzed. Materials and Methods In a retrospective cohort study including 163 patients at baseline, inflammatory and metabolic parameters were assessed at 4 time points: before surgery (baseline), 6 months after surgery (visit 1), 2 years after surgery (visit 2), and 4 years after surgery (visit 3). Univariate regression analysis was used to identify variables that were thought to determine change in inflammatory parameters. Results CRP, hs-CRP, leucocytes, and ferritin significantly declined in the mid- and long-term according to the U-shaped curve of weight loss (p<0.001). Change in body mass index (BMI) at long-time follow-up showed a significant linear effect on change in leucocytes (B=0.082; p<0.001) and change in hs-CRP (B=0.03; p<0.05). There was a strong, positive correlation between T2D and hs-CRP at visit 2 (rs=0.195; p<0.05) and visit 3 (rs=0.36; p=0.001). With regard to type of surgery and gender, there were no significant differences in inflammatory parameters. Conclusion BS is able to reduce obesity-related chronic low-grade inflammation up to 4 years after surgical intervention. The improvement in metaflammation is related to the change in BMI and remission of T2D in the long-term. Graphical abstract


Author(s):  
Sofia Ainonen ◽  
Mysore V Tejesvi ◽  
Md. Rayhan Mahmud ◽  
Niko Paalanne ◽  
Tytti Pokka ◽  
...  

Abstract Background Intrapartum antibiotic prophylaxis (IAP) is widely used, but the evidence of the long-term effects on the gut microbiota and subsequent health of children is limited. Here, we compared the impacts of perinatal antibiotic exposure and later courses of antibiotic courses on gut microbiota. Methods This was a prospective, controlled cohort study among 100 vaginally delivered infants with different perinatal antibiotic exposures: control (27), IAP (27), postnatal antibiotics (24), and IAP and postnatal antibiotics (22). At 1 year of age, we performed next-generation sequencing of the bacterial 16S ribosomal RNA gene of fecal samples. Results Exposure to the perinatal antibiotics had a clear impact on the gut microbiota. The abundance of the Bacteroidetes phylum was significantly higher in the control group, whereas the relative abundance of Escherichia coli was significantly lower in the control group. The impact of the perinatal antibiotics on the gut microbiota composition was greater than exposure to later courses of antibiotics (28% of participants). Conclusions Perinatal antibiotic exposure had a marked impact on the gut microbiota at the age of 1 year. The timing of the antibiotic exposure appears to be the critical factor for the changes observed in the gut microbiota. Impact Infants are commonly exposed to IAP and postnatal antibiotics, and later to courses of antibiotics during the first year of life. Perinatal antibiotics have been associated with an altered gut microbiota during the first months of life, whereas the evidence regarding the long-term impact is more limited. Perinatal antibiotic exposure had a marked impact on the infant’s gut microbiota at 1 year of age. Impact of the perinatal antibiotics on the gut microbiota composition was greater than that of the later courses of antibiotics at the age of 1 year.


Sign in / Sign up

Export Citation Format

Share Document