Practical DMSO-promoted selective hydrolysis–oxidation of lignocellulosic biomass to formic acid attributed to hydrogen bonds

2021 ◽  
Author(s):  
Yan-Jun Guo ◽  
Shi-Jun Li ◽  
Yuanli Sun ◽  
Lei Wang ◽  
Wen-Min Zhang ◽  
...  

Formic acid (HCO2H) is widely used in various chemical processes, studied in fuel cells, and considered as a promising candidate for hydrogen storage. Currently, industrial production of HCO2H mainly depends...

Author(s):  
Kuo-Wei Huang ◽  
Sudipta Chatterjee ◽  
Indranil Dutta ◽  
Yanwei Lum ◽  
Zhiping Lai

Formic acid has been proposed as a hydrogen energy carrier because of its many desirable properties, such as low toxicity and flammability, and a high volumetric hydrogen storage capacity of...


2011 ◽  
Vol 196 (19) ◽  
pp. 7951-7956 ◽  
Author(s):  
Xingwen Yu ◽  
Peter G. Pickup

Author(s):  
Saeed Kazemiabnavi ◽  
Aneet Soundararaj ◽  
Haniyeh Zamani ◽  
Bjoern Scharf ◽  
Priya Thyagarajan ◽  
...  

In recent years, there has been increased interest in fuel cells as a promising energy storage technology. The environmental impacts due to the extensive fossil fuel consumption is becoming increasingly important as greenhouse gas (GHG) levels in the atmosphere continue to rise rapidly. Furthermore, fuel cell efficiencies are not limited by the Carnot limit, a major thermodynamic limit for power plants and internal combustion engines. Therefore, hydrogen fuel cells could provide a long-term solution to the automotive industry, in its search for alternate propulsion systems. Two most important methods for hydrogen delivery to fuel cells used for vehicle propulsion were evaluated in this study, which are fuel processing and hydrogen storage. Moreover, the average fuel cost and the greenhouse gas emission for hydrogen fuel cell (H2 FCV) and gasoline fuel cell (GFCV) vehicles are compared to that of a regular gasoline vehicle based on the Argonne National Lab’s GREET model. The results show that the average fuel cost per 100 miles for a H2 FCV can be up to 57% lower than that of regular gasoline vehicles. Moreover, the obtained results confirm that the well to wheel greenhouse gas emission of both H2 FCV and GFCV is significantly less than that of regular gasoline vehicles. Furthermore, the investment return period for hydrogen storage techniques are compared to fuel processing methods. A qualitative safety and infrastructure dependency comparison of hydrogen storage and fuel processing methods is also presented.


2020 ◽  
Vol 6 (2) ◽  
pp. 190028-190028 ◽  
Author(s):  
Berdan Ulas ◽  
Berdan Ulas ◽  
Hilal Kivrak ◽  
Hilal Kivrak

Sign in / Sign up

Export Citation Format

Share Document