Organic building blocks at inorganic nanomaterial interfaces

2022 ◽  
Author(s):  
Yunping Huang ◽  
Theodore A. Cohen ◽  
Breena M. Sperry ◽  
Helen Larson ◽  
Hao A. Nguyen ◽  
...  

Inorganic–organic interfaces: a tutorial on using organic functional groups to enhance the performances and/or enable new functionality of inorganic nanomaterials.

2019 ◽  
Author(s):  
Patrick Fier ◽  
Kevin M. Maloney

Herein we describe the development and application of a method for the mild, late-stage conversion of primary sulfonamides to several other other functional groups. These reactions occur via initial reductive deamination of sulfonamides to sulfinates via an NHC-catalyzed reaction of transiently formed <i>N</i>-sulfonylimines. The method described here is tolerant of nearly all common functional groups, as exemplified by the late-stage derivatization of several complex pharmaceutical compounds. Based on the prevalence of sulfonamide-containing drugs and building blocks, we have developed a method to enable sulfonamides to be applied as versatile synthetic handles for synthetic chemsitry.


2019 ◽  
Author(s):  
Patrick Fier ◽  
Kevin M. Maloney

Herein we describe the development and application of a method for the mild, late-stage conversion of primary sulfonamides to several other other functional groups. These reactions occur via initial reductive deamination of sulfonamides to sulfinates via an NHC-catalyzed reaction of transiently formed <i>N</i>-sulfonylimines. The method described here is tolerant of nearly all common functional groups, as exemplified by the late-stage derivatization of several complex pharmaceutical compounds. Based on the prevalence of sulfonamide-containing drugs and building blocks, we have developed a method to enable sulfonamides to be applied as versatile synthetic handles for synthetic chemsitry.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 720
Author(s):  
Satomi Niwayama

Symmetric organic compounds are generally obtained inexpensively, and therefore they can be attractive building blocks for the total synthesis of various pharmaceuticals and natural products. The drawback is that discriminating the identical functional groups in the symmetric compounds is difficult. Water is the most environmentally benign and inexpensive solvent. However, successful organic reactions in water are rather limited due to the hydrophobicity of organic compounds in general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile strategies for the synthesis of a variety of significant organic compounds. This review focuses on the recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media without utilizing enzymes.


Complexity ◽  
2006 ◽  
Vol 11 (3) ◽  
pp. 9-10 ◽  
Author(s):  
Harold J. Morowitz ◽  
Vijayasarathy Srinivasan ◽  
Eric Smith

1969 ◽  
Vol 57 (4) ◽  
pp. 821-825 ◽  
Author(s):  
Walter L. Nazimowitz ◽  
T. S. Ma

RSC Advances ◽  
2015 ◽  
Vol 5 (108) ◽  
pp. 89025-89029 ◽  
Author(s):  
Vandana Singh ◽  
Mohan Monisha ◽  
Roy Anindya ◽  
Prolay Das

DNA–organic hybrid molecular building blocks are generated by covalent conjugation of the carboxyl groups of protoporphyrin IX with the amine functional groups of modified DNA oligomers.


Sign in / Sign up

Export Citation Format

Share Document