scholarly journals Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields.

2021 ◽  
Author(s):  
Sara Lopez ◽  
Nicolas Hallali ◽  
Yoann Lalatonne ◽  
Arnaud Hillion ◽  
Joana Antunes ◽  
...  

The destruction of cells using the mechanical activation of magnetic nanoparticles by low-frequency magnetic fields constitutes a recent and interesting approach in cancer therapy. Here, we showed that superparamagnetic iron...

2018 ◽  
Vol 6 (17) ◽  
pp. 2528-2535 ◽  
Author(s):  
Caixia Yang ◽  
Gan Lin ◽  
Congqing Zhu ◽  
Xin Pang ◽  
Yang Zhang ◽  
...  

In this study, metalla-aromatic agents and a cluster of superparamagnetic iron oxide nanoparticles were loaded inside a micellar carrier and used for MRI/PA imaging-guided PTT/PDT synergistic cancer therapy.


Nanoscale ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 3480-3488 ◽  
Author(s):  
Marco Mendozza ◽  
Costanza Montis ◽  
Lucrezia Caselli ◽  
Marcell Wolf ◽  
Piero Baglioni ◽  
...  

The inclusion of superparamagnetic iron oxide nanoparticles (SPIONs) in lipid mesophases is a promising strategy for drug-delivery applications, combining the innate biocompatibility of lipid architectures with SPIONs’ response to external magnetic fields.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3096
Author(s):  
Katarína Zakutanská ◽  
Danil Petrov ◽  
Peter Kopčanský ◽  
Dorota Węgłowska ◽  
Natália Tomašovičová

In this paper, results acquired from capacitance measurements performed on composites based on nematic liquid crystal 4-cyano-40-hexylbiphenyl (6CB) and spherical iron oxide nanoparticles of various sizes are presented. Electric and magnetic Fréedericksz transitions, as well as structural transitions in combined electric and magnetic fields, were investigated. The obtained results showed the lowering of the threshold magnetic field with an increase in the volume concentration of nanoparticles. Estimations based on results obtained from measurements suggest soft anchoring between liquid crystal director and nanoparticles magnetization vector.


2020 ◽  
Vol 10 (2) ◽  
pp. 166-174
Author(s):  
Mehdi Khoshneviszadeh ◽  
Sarah Zargarnezhad ◽  
Younes Ghasemi ◽  
Ahmad Gholami

Background: Magnetic cell immobilization has been introduced as a novel, facile and highly efficient approach for cell separation. A stable attachment between bacterial cell wall with superparamagnetic iron oxide nanoparticles (SPIONs) would enable the microorganisms to be affected by an outer magnetic field. At high concentrations, SPIONs produce reactive oxygen species in cytoplasm, which induce apoptosis or necrosis in microorganisms. Choosing a proper surface coating could cover the defects and increase the efficiency. Methods: In this study, asparagine, APTES, lipo-amino acid and PEG surface modified SPIONs was synthesized by co-precipitation method and characterized by FTIR, TEM, VSM, XRD, DLS techniques. Then, their protective effects against four Gram-positive and Gram-negative bacterial strains including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were examined through microdilution broth and compared to naked SPION. Results: The evaluation of characterization results showed that functionalization of magnetic nanoparticles could change their MS value, size and surface charges. Also, the microbial analysis revealed that lipo-amino acid coated magnetic nanoparticles has the least adverse effect on microbial strain among tested SPIONs. Conclusion: This study showed lipo-amino acid could be considered as the most protective and even promotive surface coating, which is explained by its optimizing effect on cell penetration and negligible reductive effects on magnetic properties of SPIONs. lipo-amino acid coated magnetic nanoparticles could be used in microbial biotechnology and industrial microbiology.


2020 ◽  
Vol 6 (3) ◽  
pp. 543-546
Author(s):  
Michael Fink ◽  
Stefan J. Rupitsch ◽  
Helmut Ermert ◽  
Stefan Lyer

AbstractVarious medical procedures make use of magnetic nanoparticles, such as Magnetic Drug Targeting (MDT), which boosts the demand for imaging modalities that are capable of in vivo visualizing this kind of particles. Magnetomotive Ultrasound is an imaging technique that can detect tissue, which is perfused by magnetic nanoparticles. In this contribution, we investigate the suitability of Magnetomotive Ultrasound to serve as a monitoring system during MDT. With the conducted measurements, it was possible for the first time to observe in vivo the accumulation of iron-oxide nanoparticles during a Magnetic Drug Targeting cancer treatment applied to a small animal (rabbit).


2017 ◽  
Vol 54 (4) ◽  
pp. 630-634
Author(s):  
Carmen Stavarache ◽  
Mircea Vinatoru ◽  
Timothy Mason ◽  
Larysa Paniwnyk

Polyelectrolyte multilayer capsules are synthesized comprising of 12 total layers each containing a single layer of iron oxide nanoparticles in shells 4, 6, 8 or 10. A protein-labelled dye is embedded in the calcium carbonate template core as a model for the encapsulation of a drug. The core is dissolved after 6 layers are formed. Two types of magnetic nanoparticles are incorporated into various capsule shells: ferric oxide (Fe2O3, 50 nm) and iron oxide (Fe3O4, 15 nm), a 1:1 (vol.) mixture of the two types of nanoparticles suspensions is also used. Nanoparticle inclusion reduces the capsule sizes in all cases with the order of effect Fe3O4 [ Fe2O3 [ Fe2O3/Fe3O4 mixture. When Fe3O4 or a Fe2O3/Fe3O4 mixture is incorporated in layer 6 the reduction in size of the final capsules is less than expected. The number of surviving capsules containing nanoparticles are lower than control regardless of which of the nanoparticles is used but here the effect of Fe3O4 or a mixture of the two types of nanoparticles incorporated in layer 6 was slightly out of step. The amount of iron incorporated is almost the same regardless of which shell the nanoparticles were incorporated but the iron content using 50 nm nanoparticles is generally slightly higher than that obtained with 15 nm nanoparticles.


2017 ◽  
Vol 37 (2) ◽  
pp. 135-141
Author(s):  
Armin Ourang ◽  
Soheil Pilehvar ◽  
Mehrzad Mortezaei ◽  
Roya Damircheli

Abstract In this work, polyacrylonitrile (PAN) was electrospun with and without magnetic nanoparticles (aluminum doped iron oxide) and was turned into magnetic nanofibers. The results showed that nanofibers diameter decreased from 700 nm to 300 nm by adding nanoparticles. Furthermore, pure PAN nanofibers were indicated to have low magnetic ability due to polar bonds that exist in their acrylonitrile groups. Obviously by adding only 4 wt% of the nanoparticles to PAN nanofibers, magnetic ability soared by more than 10 times, but at a higher percentage, it was shown to change just a little due to negative interaction among nanoparticles. This event relates to antiferromagnetically coupling of nanoparticles due to incomplete dispersion at higher percentage.


2012 ◽  
Vol 393 ◽  
pp. 328-333 ◽  
Author(s):  
Amelia J. Wagstaff ◽  
Sarah D. Brown ◽  
Megan R. Holden ◽  
Gemma E. Craig ◽  
Jane A. Plumb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document