scholarly journals In Vivo Study on Magnetomotive Ultrasound Imaging in the Framework of Nanoparticle based Magnetic Drug Targeting

2020 ◽  
Vol 6 (3) ◽  
pp. 543-546
Author(s):  
Michael Fink ◽  
Stefan J. Rupitsch ◽  
Helmut Ermert ◽  
Stefan Lyer

AbstractVarious medical procedures make use of magnetic nanoparticles, such as Magnetic Drug Targeting (MDT), which boosts the demand for imaging modalities that are capable of in vivo visualizing this kind of particles. Magnetomotive Ultrasound is an imaging technique that can detect tissue, which is perfused by magnetic nanoparticles. In this contribution, we investigate the suitability of Magnetomotive Ultrasound to serve as a monitoring system during MDT. With the conducted measurements, it was possible for the first time to observe in vivo the accumulation of iron-oxide nanoparticles during a Magnetic Drug Targeting cancer treatment applied to a small animal (rabbit).

2016 ◽  
Vol 25 (3) ◽  
pp. 375-383 ◽  
Author(s):  
Bogdan Silviu Ungureanu ◽  
Cristian-Mihail Teodorescu ◽  
Adrian Săftoiu

Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver, ranking as the second most common cause of death from cancer worldwide. Magnetic nanoparticles (MNPs) have been used so far in tumor diagnosis and treatment, demonstrating great potential and promising results. In principle, three different approaches can be used in the treatment of tumors with superparamagnetic iron oxide nanoparticles: magnetically induced hyperthermia, drug targeting and selective suppression of tumor growth. This review focuses on the use of iron oxide nanoparticles for the diagnosis and treatment of liver cancer and offers a walkthrough from the MNPs imaging applicability to further therapeutic options, including their potential flaws. The MNP unique physical and biochemical properties will be mentioned in close relationship to their subsequent effects on the human body, and, also, their toxic potential will be noted. A presentation of what barriers the MNPs should overcome to be more successful will conclude this review. Abbreviations: AMF: Alternating magnetic field; DOX: Doxorubicin; GD: Gadolinium; HCC: hepatocellular carcinoma; 131I: Iodine 131; MDT: Magnetic drug targeting; ML: Magnetoliposomes; MNP: magnetic nanoparticles; MRI: Magnetic Resonance Imaging; PNIPA: Poly-N-isopropylacrylamide; SPIONS: Superparamagnetic iron oxide nanoparticles; VEGF: Vascular endothelial growth factor.


Author(s):  
Stefan Lyer ◽  
Raminder Singh ◽  
Rainer Tietze ◽  
Christoph Alexiou

AbstractNanomedicine and superparamagnetic iron oxide nanoparticles (SPIONs) are thought to have an important impact on medicine in the future. Especially in cancer therapy, SPIONs offer the opportunity of improving the effectivity of the treatment and reduce side effects by magnetic accumulation of SPION-bound chemotherapeutics in the tumor area. Although still some challenges have to be overcome, before the new treatment concept of magnetic drug targeting will reach the patients, substantial progress has been made, and promising results were shown in the last years.


2006 ◽  
Vol 6 (9) ◽  
pp. 3222-3225 ◽  
Author(s):  
F. Wiekhorst ◽  
C. Seliger ◽  
R. Jurgons ◽  
U. Steinhoff ◽  
D. Eberbeck ◽  
...  

Magnetic nanoparticles can be used in medicine in vivo as contrast agents and as a drug carrier system for chemotherapeutics. Thus local cancer therapy is performed with Magnetic Drug Targeting (MDT) and allows a specific delivery of therapeutic agents to desired targets, i.e., tumors, by using a chemotherapeutic substance bound to magnetic nanoparticles and focused with an external magnetic field to the tumor after intraarterial application. Important for this therapeutic principle is the distribution of the particles in the whole organism and especially in the tumor. Therefore we used magnetorelaxometry to quantify ferrofluids delivered after MDT. Tissue samples of some mm3 volume of a VX2 squamous cell carcinoma were measured by magnetic relaxation and the amount of iron was determined using the original ferrofluid suspension as a reference. From this the distribution of the magnetic particles within the slice of tumor was reconstructed. Histological cross-sections of the respective tumor offer the opportunity to map quantitatively the particle distribution and the vascularisation in the targeted tumor on a microscopic scale. Our data show that the integral method magnetorelaxometry and microscopic histological methods can complete each other efficiently.


The Analyst ◽  
2005 ◽  
Vol 130 (10) ◽  
pp. 1395 ◽  
Author(s):  
Igor Chourpa ◽  
Laurence Douziech-Eyrolles ◽  
Lazare Ngaboni-Okassa ◽  
Jean-François Fouquenet ◽  
Simone Cohen-Jonathan ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1078
Author(s):  
Artem A. Sizikov ◽  
Marianna V. Kharlamova ◽  
Maxim P. Nikitin ◽  
Petr I. Nikitin ◽  
Eugene L. Kolychev

Magnetic nanoparticles have been widely used in nanobiomedicine for diagnostics and the treatment of diseases, and as carriers for various drugs. The unique magnetic properties of “magnetic” drugs allow their delivery in a targeted tumor or tissue upon application of a magnetic field. The approach of combining magnetic drug targeting and gene delivery is called magnetofection, and it is very promising. This method is simple and efficient for the delivery of genetic material to cells using magnetic nanoparticles controlled by an external magnetic field. However, magnetofection in vivo has been studied insufficiently both for local and systemic routes of magnetic vector injection, and the relevant data available in the literature are often merely descriptive and contradictory. In this review, we collected and systematized the data on the efficiency of the local injections of magnetic nanoparticles that carry genetic information upon application of external magnetic fields. We also investigated the efficiency of magnetofection in vivo, depending on the structure and coverage of magnetic vectors. The perspectives of the development of the method were also considered.


Sign in / Sign up

Export Citation Format

Share Document