Synthesis of 2D Ti3C2Tx MXene for Flexible Strain and Pressure Sensors

2021 ◽  
Author(s):  
Yuping Zeng ◽  
Wei Wu

As an important device in flexible and wearable microelectronic devices, flexible sensors have engaged a lot of attention due to their wide application in human motion monitoring, human-computer interaction and...

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Yongsheng Zhu ◽  
Fengxin Sun ◽  
Changjun Jia ◽  
Tianming Zhao ◽  
Yupeng Mao

Transparent stretchable wearable hybrid nano-generators present great opportunities in motion sensing, motion monitoring, and human-computer interaction. Herein, we report a piezoelectric-triboelectric sport sensor (PTSS) which is composed of TENG, PENG, and a flexible transparent stretchable self-healing hydrogel electrode. The piezoelectric effect and the triboelectric effect are coupled by a contact separation mode. According to this effect, the PTSS shows a wide monitoring range. It can be used to monitor human multi-dimensional motions such as bend, twist, and rotate motions, including the screw pull motion of table tennis and the 301C skill of diving. In addition, the flexible transparent stretchable self-healing hydrogel is used as the electrode, which can meet most of the motion and sensing requirements and presents the characteristics of high flexibility, high transparency, high stretchability, and self-healing behavior. The whole sensing system can transmit signals through Bluetooth devices. The flexible, transparent, and stretchable wearable hybrid nanogenerator can be used as a wearable motion monitoring sensor, which provides a new strategy for the sports field, motion monitoring, and human-computer interaction.


2019 ◽  
Vol 11 (28) ◽  
pp. 25613-25623 ◽  
Author(s):  
Jiajun Xu ◽  
Guangyu Wang ◽  
Yufan Wu ◽  
Xiuyan Ren ◽  
Guanghui Gao

Author(s):  
Xiangyang Li ◽  
Zhili Zhang ◽  
Feng Liang ◽  
Qinhe Gao ◽  
Lilong Tan

Aiming at the human–computer interaction control (HCIC) requirements of multi operators in collaborative virtual maintenance (CVM), real-time motion capture and simulation drive of multi operators with optical human motion capture system (HMCS) is proposed. The detailed realization process of real-time motion capture and data drive for virtual operators in CVM environment is presented to actualize the natural and online interactive operations. In order to ensure the cooperative and orderly interactions of virtual operators with the input operations of actual operators, collaborative HCIC model is established according to specific planning, allocating and decision-making of different maintenance tasks as well as the human–computer interaction features and collaborative maintenance operation features among multi maintenance trainees in CVM process. Finally, results of the experimental implementation validate the effectiveness and practicability of proposed methods, models, strategies and mechanisms.


Nanoscale ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 4925-4932 ◽  
Author(s):  
Shun-Xin Li ◽  
Hong Xia ◽  
Yi-Shi Xu ◽  
Chao Lv ◽  
Gong Wang ◽  
...  

Gold nanoparticles were assembled into highly aligned micro/nanowires for flexible pressure sensors.


Author(s):  
Wenlong Zhang ◽  
Masayoshi Tomizuka ◽  
Nancy Byl

In this paper, a wireless human motion monitoring system based on joint angle sensors and smart shoes is introduced. An inertial measurement unit (IMU) is employed in a joint angle sensor to estimate the lower-extremity joint rotation in three dimensions. Four pressure sensors are embedded in a smart shoe to measure the distribution of ground contact forces (GCFs). Zig-bee and Bluetooth modules are combined with the joint angle sensors and smart shoes respectively to make the whole system wireless. It is shown that gait phase and step length can be calculated based on the raw sensor data for gait analysis. To provide visual feedback to the users, with the consent of Apple Inc., an user interface application is developed on an iPad. Experimental results are obtained from both a healthy subject and a stroke patient for comparison. Some discussions are made about the potential use of this system in a clinical environment.


Author(s):  
Wenlong Zhang ◽  
Masayoshi Tomizuka ◽  
Nancy Byl

In this paper, a wireless human motion monitoring system is presented for gait analysis and visual feedback in rehabilitation training. The system consists of several inertial sensors and a pair of smart shoes with pressure sensors. The inertial sensors can capture lower-extremity joint rotations in three dimensions and the smart shoes can measure the force distributions on the two feet during walking. Based on the raw measurement data, gait phases, step lengths, and center of pressure (CoP) are calculated to evaluate the abnormal walking behaviors. User interfaces are developed on both laptops and mobile devices to provide visual feedback to patients and physical therapists. The system has been tested on healthy subjects and then applied in a clinical study with 24 patients. It has been verified that the patients are able to understand the intuitive visual feedback from the system, and similar training performance has been achieved compared to the traditional gait training with physical therapists. The experimental results with one healthy subject, one stroke patient, and one Parkinson's disease patient are compared to demonstrate the performance of the system.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiangkun Li ◽  
Guoqing Sun ◽  
Yifei Li

With the development of science and technology, the introduction of virtual reality technology has pushed the development of human-computer interaction technology to a new height. The combination of virtual reality and human-computer interaction technology has been applied more and more in military simulation, medical rehabilitation, game creation, and other fields. Action is the basis of human behavior. Among them, human behavior and action analysis is an important research direction. In human behavior and action, recognition research based on behavior and action has the characteristics of convenience, intuition, strong interaction, rich expression information, and so on. It has become the first choice of many researchers for human behavior analysis. However, human motion and motion pictures are complex objects with many ambiguous factors, which are difficult to express and process. Traditional motion recognition is usually based on two-dimensional color images, while two-dimensional RGB images are vulnerable to background disturbance, light, environment, and other factors that interfere with human target detection. In recent years, more and more researchers have begun to use fuzzy mathematics theory to identify human behaviors. The plantar pressure data under different motion modes were collected through experiments, and the current gait information was analyzed. The key gait events including toe-off and heel touch were identified by dynamic baseline monitoring. For the error monitoring of key gait events, the screen window is used to filter the repeated recognition events in a certain period of time, which greatly improves the recognition accuracy and provides important gait information for motion pattern recognition. The similarity matching is performed on each template, the correct rate of motion feature extraction is 90.2%, and the correct rate of motion pattern recognition is 96.3%, which verifies the feasibility and effectiveness of human motion recognition based on fuzzy theory. It is hoped to provide processing techniques and application examples for artificial intelligence recognition applications.


2018 ◽  
Vol 6 (48) ◽  
pp. 13120-13127 ◽  
Author(s):  
Ziqiang Zhou ◽  
Ying Li ◽  
Jiang Cheng ◽  
Shanyong Chen ◽  
Rong Hu ◽  
...  

Supersensitive all-fabric pressure sensors with a bottom interdigitated textile electrode screen-printed using silver paste and a top bridge of AgNW-coated cotton fabric are successfully fabricated for human motion monitoring and human–machine interaction.


Sign in / Sign up

Export Citation Format

Share Document