scholarly journals Retraction: A highly antibacterial polymeric hybrid micelle with efficiently targeted anticancer siRNA delivery and anti-infection in vitro/in vivo

Nanoscale ◽  
2022 ◽  
Author(s):  
Li Zhou ◽  
Yuewei Xi ◽  
Mi Chen ◽  
Wen Niu ◽  
Min Wang ◽  
...  
Keyword(s):  

Retraction of ‘A highly antibacterial polymeric hybrid micelle with efficiently targeted anticancer siRNA delivery and anti-infection in vitro/in vivo’ by Li Zhou et al., Nanoscale, 2018, 10, 17304–17317, DOI: 10.1039/C8NR03001D.

2019 ◽  
Vol 20 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Chi Zhang ◽  
Zhichun Gu ◽  
Long Shen ◽  
Xianyan Liu ◽  
Houwen Lin

Background: To deliver drugs to treat Alzheimer’s Disease (AD), nanoparticles should firstly penetrate through blood brain barrier, and then target neurons. Methods: Recently, we developed an Apo A-I and NL4 dual modified nanoparticle (ANNP) to deliver beta-amyloid converting enzyme 1 (BACE1) siRNA. Although promising in vitro results were obtained, the in vivo performance was not clear. Therefore, in this study, we further evaluated the in vivo neuroprotective effect and toxicity of the ANNP/siRNA. The ANNP/siRNA was 80.6 nm with good stability when incubated with serum. In vivo, the treatment with ANNP/siRNA significantly improves the spatial learning and memory of APP/PS1 double transgenic mice, as determined by mean escape latency, times of crossing the platform area during the 60 s swimming and the percentage of the distance in the target quadrant. Results and Conclusion: After the treatment, BACE1 RNA level of ANNP/siRNA group was greatly reduced, which contributed a good AD treatment outcome. Finally, after repeated administration, the ANNP/siRNA did not lead to significant change as observed by HE staining of main organs, suggesting the good biocompatibility of ANNP/siRNA. These results demonstrated that the ANNP was a good candidate for AD targeting siRNA delivery.


2014 ◽  
Vol 25 (10) ◽  
pp. 1744-1751 ◽  
Author(s):  
King S. Siu ◽  
Xiufen Zheng ◽  
Yanling Liu ◽  
Yujuan Zhang ◽  
Xusheng Zhang ◽  
...  

2020 ◽  
Vol 6 (31) ◽  
pp. eabc2148
Author(s):  
Yuting Wen ◽  
Hongzhen Bai ◽  
Jingling Zhu ◽  
Xia Song ◽  
Guping Tang ◽  
...  

It requires multistep synthesis and conjugation processes to incorporate multifunctionalities into a polyplex gene vehicle to overcome numerous hurdles during gene delivery. Here, we describe a supramolecular platform to precisely control, screen, and optimize molecular architectures of siRNA targeted delivery vehicles, which is based on rationally designed host-guest complexation between a β-cyclodextrin–based cationic host polymer and a library of guest polymers with various PEG shape and size, and various density of ligands. The host polymer is responsible to load/unload siRNA, while the guest polymer is responsible to shield the vehicles from nonspecific cellular uptake, to prolong their circulation time, and to target tumor cells. A series of precisely controlled molecular architectures through a simple assembly process allow for a rapid optimization of siRNA delivery vehicles in vitro and in vivo for therapeutic siRNA-Bcl2 delivery and tumor therapy, indicating the platform is a powerful screening tool for targeted gene delivery vehicles.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2570 ◽  
Author(s):  
Inés Serrano-Sevilla ◽  
Álvaro Artiga ◽  
Scott G. Mitchell ◽  
Laura De Matteis ◽  
Jesús M. de la Fuente

Natural polysaccharides are frequently used in the design of drug delivery systems due to their biocompatibility, biodegradability, and low toxicity. Moreover, they are diverse in structure, size, and charge, and their chemical functional groups can be easily modified to match the needs of the final application and mode of administration. This review focuses on polysaccharidic nanocarriers based on chitosan and hyaluronic acid for small interfering RNA (siRNA) delivery, which are highly positively and negatively charged, respectively. The key properties, strengths, and drawbacks of each polysaccharide are discussed. In addition, their use as efficient nanodelivery systems for gene silencing applications is put into context using the most recent examples from the literature. The latest advances in this field illustrate effectively how chitosan and hyaluronic acid can be modified or associated with other molecules in order to overcome their limitations to produce optimized siRNA delivery systems with promising in vitro and in vivo results.


Nanoscale ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 4614-4614 ◽  
Author(s):  
Li Zhou ◽  
Yuewei Xi ◽  
Mi Chen ◽  
Wen Niu ◽  
Min Wang ◽  
...  
Keyword(s):  

Correction for ‘A highly antibacterial polymeric hybrid micelle with efficiently targeted anticancer siRNA delivery and anti-infection in vitro/in vivo’ by Li Zhou et al., Nanoscale, 2018, 10, 17304–17317.


Nanoscale ◽  
2020 ◽  
Vol 12 (20) ◽  
pp. 10939-10943 ◽  
Author(s):  
Deyao Zhao ◽  
Ge Yang ◽  
Qing Liu ◽  
Wenjing Liu ◽  
Yuhua Weng ◽  
...  

Spatiotemporal controllable siRNA delivery and gene modulation by light-triggerable aptamer nanoswitcher was reported in this study, which achieved on-demand siRNA internalization by cancer cells at desired site and time in vitro and in vivo.


2020 ◽  
Vol 6 (30) ◽  
pp. eaba5379 ◽  
Author(s):  
Md. Nazir Hossen ◽  
Lin Wang ◽  
Harisha R. Chinthalapally ◽  
Joe D. Robertson ◽  
Kar-Ming Fung ◽  
...  

Gene silencing using small-interfering RNA (siRNA) is a viable therapeutic approach; however, the lack of effective delivery systems limits its clinical translation. Herein, we doped conventional siRNA-liposomal formulations with gold nanoparticles to create “auroliposomes,” which significantly enhanced gene silencing. We targeted MICU1, a novel glycolytic switch in ovarian cancer, and delivered MICU1-siRNA using three delivery systems—commercial transfection agents, conventional liposomes, and auroliposomes. Low-dose siRNA via transfection or conventional liposomes was ineffective for MICU1 silencing; however, in auroliposomes, the same dose gave >85% gene silencing. Efficacy was evident from both in vitro growth assays of ovarian cancer cells and in vivo tumor growth in human ovarian cell line—and patient-derived xenograft models. Incorporation of gold nanoparticles shifted intracellular uptake pathways such that liposomes avoided degradation within lysosomes. Auroliposomes were nontoxic to vital organs. Therefore, auroliposomes represent a novel siRNA delivery system with superior efficacy for multiple therapeutic applications.


2017 ◽  
Vol 35 (4_suppl) ◽  
pp. 287-287 ◽  
Author(s):  
Matthew S. Strand ◽  
Hua Pan ◽  
Bradley Krasnick ◽  
Xiuli Zhang ◽  
Peter S. Goedegebuure ◽  
...  

287 Background: Greater than 95% of pancreatic adenocarcinomas (PDACs) are driven by KRAS activation; yet, despite decades of work, no RAS inhibitors have reached the clinic. Furthermore, the delivery of therapeutic agents of any kind to PDAC has been hindered by the extensive desmoplasia that accompanies these tumors. Herein, we show that serum-stable and pH-sensing nanoparticles (NPs) are taken up by PDAC cells, can deliver KRAS-specific siRNA into the cytoplasm and inhibit KRAS expression, thereby causing cell death. We go on to use a spontaneous model of pancreas cancer to show that this system can effectively deliver siRNA to stroma-rich tumors. Methods: The murine PDAC cell line KP1 was tested for NP uptake in vitro utilizing fluorescent siRNA NPs (fNPs) in combination with confocal microscopy and flow cytometry. KP1 cells were treated with KRAS-siRNA NP, and KRAS expression and cell viability were assessed with RT-PCR and CellTiter-Glo, respectively. Mice bearing subcutaneous KP1 tumors and KPPC mice with spontaneous PDAC were injected with fNP, and tumor fluorescence was assessed using an in vivo imaging system and fluorescence microscopy. Results: KP1 cells take up fNP in vitro, with > 99% of cells positive for fluorescent signal at 24 hours. Treatment with KRAS-siRNA NP of KP1 cells reduced KRAS expression by 69% (see Figure) and reduced cell viability by 45% compared to untreated and scramble-siRNA treated controls. Gemcitabine demonstrated an additive effect with anti-KRAS therapy. Tumors from KP1 cells grown in mice, and tumors from KPPC mice, were strongly fluorescent 24 hours after IV injection of fNP. Fluorescence microscopy showed successful delivery of fNP to tumors. Conclusions: Our NP system can precisely deliver siRNA to KP1 cells and spontaneous PDAC, overcoming the predominant stromal component in these tumors. KRAS-siRNA delivery downregulates KRAS expression, leading to cell death. This represents a novel treatment for PDAC. Furthermore, with its ability to deliver siRNA into the tumor microenvironment and suppress a known oncogene, this platform could be used to target other putative drivers of tumor progression across various cancer types.


2007 ◽  
Vol 35 (1) ◽  
pp. 44-46 ◽  
Author(s):  
L. Crombez ◽  
A. Charnet ◽  
M.C. Morris ◽  
G. Aldrian-Herrada ◽  
F. Heitz ◽  
...  

The major obstacle to clinical development of siRNAs (short interfering RNAs), like for most of the nucleic-acid-based strategies, is their poor cellular uptake and bioavailability. Although several viral and non-viral strategies have been proposed to improve siRNA delivery, their applications in vivo remain a major challenge. We have developed a new strategy, based on a short amphipathic peptide, MPG, that is able to form stable nanoparticles with siRNA. MPG-based particles enter the cell independently of the endosomal pathway and can efficiently deliver siRNA in a fully biologically active form into a variety of cell lines and in vivo. This short review will discuss the mechanism and the potency of the MPG strategy for siRNA delivery both in vitro and in vivo.


2017 ◽  
Vol 256 ◽  
pp. 79-91 ◽  
Author(s):  
Gudrun Aldrian ◽  
Anaïs Vaissière ◽  
Karidia Konate ◽  
Quentin Seisel ◽  
Eric Vivès ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document