Fabrication of necklace-like fibers separator by electrospinning technique for high electrochemical performance and safe lithium metal batteries

Author(s):  
Can Liao ◽  
Longfei Han ◽  
Na Wu ◽  
Xiaowei Mu ◽  
Yuan Hu ◽  
...  

Lithium (Li) metal batteries, as the ultimate goal of high energy density storage devices, have been regarded as a suitable candidate for next-generation electrical energy storage. Nevertheless, uncontrolled lithium dendrites...

Author(s):  
Jianzong Man ◽  
Wenlong Liu ◽  
Haibang Zhang ◽  
Kun Liu ◽  
Yongfu Cui ◽  
...  

Controlling lithium dendrites growth and alleviating volume expansion of lithium metal anode are two key factors to develop high energy density lithium metal batteries. In this work, the planar Cu...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tianyi Wang ◽  
Yanbin Li ◽  
Jinqiang Zhang ◽  
Kang Yan ◽  
Pauline Jaumaux ◽  
...  

Abstract The practical applications of lithium metal anodes in high-energy-density lithium metal batteries have been hindered by their formation and growth of lithium dendrites. Herein, we discover that certain protein could efficiently prevent and eliminate the growth of wispy lithium dendrites, leading to long cycle life and high Coulombic efficiency of lithium metal anodes. We contend that the protein molecules function as a “self-defense” agent, mitigating the formation of lithium embryos, thus mimicking natural, pathological immunization mechanisms. When added into the electrolyte, protein molecules are automatically adsorbed on the surface of lithium metal anodes, particularly on the tips of lithium buds, through spatial conformation and secondary structure transformation from α-helix to β-sheets. This effectively changes the electric field distribution around the tips of lithium buds and results in homogeneous plating and stripping of lithium metal anodes. Furthermore, we develop a slow sustained-release strategy to overcome the limited dispersibility of protein in the ether-based electrolyte and achieve a remarkably enhanced cycling performance of more than 2000 cycles for lithium metal batteries.


Author(s):  
Hui Zhang ◽  
Yabing Qi

Lithium metal batteries are the promising candidates for meeting the increasing demand of next-generation energy storage devices with high energy density, however, the problems of lithium dendrite and unstable solid...


Author(s):  
Lulu Xu ◽  
Xiu Yun Daphne Ma ◽  
Wei Wang ◽  
Jian Liu ◽  
Zhe Wang ◽  
...  

Recently, lithium metal batteries (LMBs) have regained significant attention as a type of promising rechargeable energy storage devices with desired high energy density and long lifetime. Nevertheless, the persistent growth...


Author(s):  
Ingeborg Treu Røe ◽  
Sondre K. Schnell

Dendrite growth on the lithium metal anode still obstructs a widespread commercialization of high energy density lithium metal batteries. In this work, we investigate how the crystal structure of the...


Author(s):  
Sha Fu ◽  
Lan-Lan Zuo ◽  
Peng-Sheng Zhou ◽  
Xue-Jiao Liu ◽  
Qiang Ma ◽  
...  

Lithium metal batteries (LMBs) as the next generation promising high energy density alternatives among electrochemical storage technologies have received worldwide attention. However, the incompatibility between metallic lithium and traditional liquid...


2022 ◽  
pp. 134637
Author(s):  
Chengwei Ma ◽  
Chengcai Liu ◽  
Yuanxing Zhang ◽  
Xinyu Zhang ◽  
Zhikun Zhao ◽  
...  

2020 ◽  
Vol 6 (10) ◽  
pp. eaaz3112 ◽  
Author(s):  
Huadong Yuan ◽  
Jianwei Nai ◽  
He Tian ◽  
Zhijin Ju ◽  
Wenkui Zhang ◽  
...  

The lithium metal anode (LMA) is considered as a promising star for next-generation high-energy density batteries but is still hampered by the severe growth of uncontrollable lithium dendrites. Here, we design “spansules” made of NaMg(Mn)F3@C core@shell microstructures as the matrix for the LMA, which can offer a long-lasting release of functional ions into the electrolyte. By the assistance of cryogenic transmission electron microscopy, we reveal that an in situ–formed metal layer and a unique LiF-involved bilayer structure on the Li/electrolyte interface would be beneficial for effectively suppressing the growth of lithium dendrites. As a result, the spansule-modified anode affords a high Coulombic efficiency of 98% for over 1000 cycles at a current density of 2 mA cm−2, which is the most stable LMA reported so far. When coupling this anode with the Li[Ni0.8Co0.1Mn0.1]O2 cathode, the practical full cell further exhibits highly improved capacity retention after 500 cycles.


2019 ◽  
Vol 55 (9) ◽  
pp. 1256-1258 ◽  
Author(s):  
Hieu Quang Pham ◽  
Eui-Hyung Hwang ◽  
Young-Gil Kwon ◽  
Seung-Wan Song

We report for the first time a promising approach to achieve the maximum capacity of LiNi0.8Co0.1Mn0.1O2 cathodes in a non-flammable electrolyte for safe and high-energy density lithium-ion and lithium metal batteries.


Sign in / Sign up

Export Citation Format

Share Document