Construction and mechanistic understanding of high-performance all-air-processed perovskite solar cells via mixed-cation engineering

Author(s):  
Wenyuan Zhang ◽  
Lang He ◽  
Yuanchao Li ◽  
Dongyan Tang ◽  
Xin Li ◽  
...  

All-air-processed perovskite solar cells (PSCs) have attracted increasing attention due to low cost and simplified manufacturing processes. At present, to fabricate efficient and stable PSCs in the air is expected....

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


2021 ◽  
Vol 119 (13) ◽  
pp. 133904
Author(s):  
Binbin Wang ◽  
Lingwei Xue ◽  
Shiqi Wang ◽  
Yao Li ◽  
Lele Zang ◽  
...  

2019 ◽  
Vol 7 (36) ◽  
pp. 20494-20518 ◽  
Author(s):  
Bo Li ◽  
Lin Fu ◽  
Shuang Li ◽  
Hui Li ◽  
Lu Pan ◽  
...  

High-efficiency and low-cost perovskite solar cells (PSCs) are desirable candidates for addressing the scalability challenge of renewable solar energy.


2021 ◽  
Vol 9 (1) ◽  
pp. 301-309
Author(s):  
Sarune Daskeviciute ◽  
Cristina Momblona ◽  
Kasparas Rakstys ◽  
Albertus Adrian Sutanto ◽  
Maryte Daskeviciene ◽  
...  

One-pot synthesized low-cost HTM V1275 exhibits a remarkable performance of 19.3% in PSCs with exceptional stability retaining 125% of the original PCE after 500 h.


2020 ◽  
Vol 12 (9) ◽  
pp. 10535-10543 ◽  
Author(s):  
Muhammad Mateen ◽  
Zulqarnain Arain ◽  
Yi Yang ◽  
Xuepeng Liu ◽  
Shuang Ma ◽  
...  

2021 ◽  
pp. 1-18
Author(s):  
Yaobo Li ◽  
Zhaohan Li ◽  
Fangze Liu ◽  
Jing Wei

This organic-inorganic hybrid perovskite materials have attracted great attention by virtue of their high absorption coefficient, low cost and simple film deposition technique. Based on these advantages, perovskite solar cells have reached an impressive power conversion efficiency over 25%. However, the low-temperature process inevitably leads to a large number of defects in the perovskite film. These defects would exacerbate the carrier recombination, induce crystal degradation, phase transformation and seriously affect the performance of devices. Studying the defects in perovskite film is of great significance for the development of high-performance perovskite solar cells. Herein, the authors summarise the causes, distribution and features of defects, as well as their effects on the performance of perovskite solar cells. Furthermore, some defect-passivation strategies on perovskite film or the device, including grain boundary passivation, surface passivation, capping layer modification and charge transport layer passivation, are discussed, respectively. Lastly, some remaining challenges in the commercialisation of perovskite solar cells are proposed.


RSC Advances ◽  
2018 ◽  
Vol 8 (17) ◽  
pp. 9409-9413 ◽  
Author(s):  
Xiaoyu Gu ◽  
Yang Li ◽  
Yanfei Mu ◽  
Min Zhang ◽  
Tongbu Lu ◽  
...  

We have employed low-cost FeCl3 as efficient dopant of Spiro-OMeTAD for high performance perovskite solar cells.


2016 ◽  
Vol 94 (4) ◽  
pp. 352-359 ◽  
Author(s):  
Andrew M. Namespetra ◽  
Arthur D. Hendsbee ◽  
Gregory C. Welch ◽  
Ian G. Hill

Three low-cost propeller-shaped small molecules based on a triphenylamine core and the high-performance donor molecule 7,7′-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole] (DTS(FBTTh2)2) were investigated as hole-transporting materials in perovskite solar cells. Each hole-transporting material was designed with highly modular side arms, allowing for different bandgaps and thin-film properties while maintaining a consistent binding energy of the highest occupied molecular orbitals to facilitate hole extraction from the perovskite active layer. Perovskite solar cell devices were fabricated with each of the three triphenylamine-based hole-transporting materials and DTS(FBTTh2)2 and were compared to devices with 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) hole-transporting layers. Each of our triphenylamine hole-transporting materials and DTS(FBTTh2)2 displayed surface morphologies that were considerably rougher than that of spiro-OMeTAD; a factor that may contribute to lower device performance. It was found that using inert, insulating polymers as additives with DTS(FBTTh2)2 reduced the surface roughness, resulting in devices with higher photocurrents.


Sign in / Sign up

Export Citation Format

Share Document