Chemical affinity assisted H2 isotope separation using Ca-rich onion-peel-derived nanoporous carbon composite

Author(s):  
Raeesh Muhammad ◽  
Suhwan Kim ◽  
Jaewoo Park ◽  
Minji Jung ◽  
Myeongeun Lee ◽  
...  

Stable isotopes of hydrogen are a prerequisite for many industrial and scientific applications and require their ready supply at a large scale. Herein, we explore the chemical affinity-assisted separation of...

1991 ◽  
Vol 37 (127) ◽  
pp. 357-367
Author(s):  
J.-L. Tison ◽  
E. M. Morris ◽  
R. Souchez ◽  
J. Jouzel

AbstractResults from a detailed profile in a 5.54 m multi-year sea-ice core from the rift area in the southern part of George VI Ice Shelf are presented. Stratigraphy, stable isotopes and Na content are used to investigate the growth processes of the ice cover and to relate them to melting processes at the bottom of the ice shelf.The thickest multi-year sea ice in the sampling area appears to be second-year sea ice that has survived one melt season. Combined salinity/stable-isotope analyses show large-scale sympathetic fluctuations that can be related to the origin of the parent water. Winter accretion represents half of the core length and mainly consists of frazil ice of normal sea-water origin. However, five major dilution events of sea water, with fresh-water input from the melting base of the ice shelf reaching 20% on two occasions, punctuate this winter accretion. Two of them correspond to platelet-ice production, which is often related to the freezing of ascending supercooled water from the bottom of the ice shelf.Brackish ice occurs between 450 and 530 cm in the core. It is demonstrated that this results from the freezing of brackish water (Jeffries and others, 1989) formed by mixing of normal sea water with melted basal shelf ice, with dilution percentages of maximum 80% fresh water.


2020 ◽  
Vol 21 (21) ◽  
pp. 7821
Author(s):  
Rovshan G. Sadygov

Cellular proteins are continuously degraded and synthesized. The turnover of proteins is essential to many cellular functions. Combined with metabolic labeling using stable isotopes, LC–MS estimates proteome dynamics in high-throughput and on a large scale. Modern mass spectrometers allow a range of instrumental settings to optimize experimental output for specific research goals. One such setting which affects the results for dynamic proteome studies is the mass resolution. The resolution is vital for distinguishing target species from co-eluting contaminants with close mass-to-charge ratios. However, for estimations of proteome dynamics from metabolic labeling with stable isotopes, the spectral accuracy is highly important. Studies examining the effects of increased mass resolutions (in modern mass spectrometers) on the proteome turnover output and accuracy have been lacking. Here, we use a publicly available heavy water labeling and mass spectral data sets of murine serum proteome (acquired on Orbitrap Fusion and Agilent 6530 QToF) to analyze the effect of mass resolution of the Orbitrap mass analyzer on the proteome dynamics estimation. Increased mass resolution affected the spectral accuracy and the number acquired tandem mass spectra.


Author(s):  
David A. Beckingsale ◽  
Thomas RW Scogland ◽  
Jason Burmark ◽  
Rich Hornung ◽  
Holger Jones ◽  
...  

2019 ◽  
Vol 7 (15) ◽  
pp. 9305-9315 ◽  
Author(s):  
Nan Zheng ◽  
Guangyu Jiang ◽  
Xiao Chen ◽  
Jiayi Mao ◽  
Yajun Zhou ◽  
...  

Potassium ion batteries (KIBs) are the emerging and promising energy storage system for large-scale electrochemical energy storage.


1992 ◽  
Vol 1 (2) ◽  
pp. 99-114
Author(s):  
Tom MacDonald

The predominant programming language for numeric and scientific applications is Fortran-77 and supercomputers are primarily used to run large-scale numeric and scientific applications. Standard C* is not widely used for numerical and scientific programming, yet Standard C provides many desirable linguistic features not present in Fortran-77. Furthermore, the existence of a standard library and preprocessor eliminates the worst portability problems. A comparison of Standard C and Fortran-77 shows several key deficiencies in C that reduce its ability to adequately solve some numerical problems. Some of these problems have already been addressed by the C standard but others remain. Standard C with a few extensions and modifications could be suitable for all numerical applications and could become more popular in supercomputing environments.


2004 ◽  
Vol 31 (2) ◽  
pp. 178-188 ◽  
Author(s):  
Won-Kee Hong ◽  
Hee-Cheul Kim

The carbon composite tube can play an important role in replacing or complementing longitudinal and transverse reinforcing steels by providing ductility and strength for conventional columns. In this study, both experimental and analytical investigations of axial behavior of large-scale circular and square concrete columns confined by carbon composite tubes are presented. The specimens are filament-wound carbon composite with 90° + 90°, 90° ± 60°, 90° ± 45°, and 90° ± 30° winding angles with respect to a longitudinal axis of a tube. The instrumented large-scale concrete-filled composite tubes are subjected to monotonic axial loads exerted by a 10 000 kN universal testing machine (UTM). The influence of transverse dilation, winding angle, thickness of a tube, as well as shape of the column section on stress–strain relationships of the confined columns is identified and discussed. Proposed equations to predict both strength and ductility of confined columns by carbon composite tubes demonstrate good correlation with test data obtained from large-scale specimens.Key words: carbon composites, glass fibers, strength, filament winding.


Sign in / Sign up

Export Citation Format

Share Document