scholarly journals Formation mechanism of zigzag patterned P(NIPAM-co-AA)/CuS composite microspheres by in situ biomimetic mineralization for morphology modulation

RSC Advances ◽  
2021 ◽  
Vol 11 (60) ◽  
pp. 37904-37916
Author(s):  
Juxiang Yang ◽  
Daodao Hu ◽  
Wei Li ◽  
Yuan Jia ◽  
Pengna Li

P(NIPAM-co-AA)/CuS composite microspheres with zigzag patterned surfaces were synthesized, and a mechanism for “the deformed shrinkage of the surface texture” was proposed. The surface morphology is sensitive to factors such as Ksp, pH, temperature, deposition amount, etc.

Author(s):  
D. A. Smith

The nucleation and growth processes which lead to the formation of a thin film are particularly amenable to investigation by transmission electron microscopy either in situ or subsequent to deposition. In situ studies have enabled the observation of island nucleation and growth, together with addition of atoms to surface steps. This paper is concerned with post-deposition crystallization of amorphous alloys. It will be argued that the processes occurring during low temperature deposition of one component systems are related but the evidence is mainly indirect. Amorphous films result when the deposition conditions such as low temperature or the presence of impurities (intentional or unintentional) preclude the atomic mobility necessary for crystallization. Representative examples of this behavior are CVD silicon grown below about 670°C, metalloids, such as antimony deposited at room temperature, binary alloys or compounds such as Cu-Ag or Cr O2, respectively. Elemental metals are not stable in the amorphous state.


1989 ◽  
Vol 160 ◽  
Author(s):  
T. L. Lin ◽  
C. W. Nieh

AbstractEpitaxial IrSi3 films have been grown on Si (111) by molecular beam epitaxy (MBE) at temperatures ranging from 630 to 800 °C and by solid phase epitaxy (SPE) at 500 °C. Good surface morphology was observed for IrSi3 layers grown by MBE at temperatures below 680 °C, and an increasing tendency to form islands is noted in samples grown at higher temperatures. Transmission electron microscopy (TEM) analysis reveals that the IrSi3 layers grow epitaxially on Si(111) with three epitaxial modes depending on the growth conditions. For IrSi3 layers grown by MBE at 630 °C, two epitaxial modes were observed with ~ 50% area coverage for each mode. Single mode epitaxial growth was achieved at a higher MBE growth temperature, but with island formation in the IrSi3 layer. A template technique was used with MBE to improve the IrSi3 surface morphology at higher growth temperatures. Furthermore, single-crystal IrSi3 was grown on Si(111) at 500 °C by SPE, with annealing performed in-situ in a TEM chamber.


Nanoscale ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 150-162
Author(s):  
Ezgi Onur Şahin ◽  
Harun Tüysüz ◽  
Candace K. Chan ◽  
Gun-hee Moon ◽  
Yitao Dai ◽  
...  

The formation mechanism of amorphous tantalum oxides was studied by total scattering experiments starting from alkoxide precursors. Hydrolysed TaxOyHz clusters form in highly dilute solutions which were transformed into L-Ta2O5 by calcination.


1992 ◽  
Author(s):  
Mark R. Kozlowski ◽  
Michael C. Staggs ◽  
Mehdi Balooch ◽  
Robert J. Tench ◽  
Wigbert J. Siekhaus

2012 ◽  
Vol 14 (9) ◽  
pp. 2983 ◽  
Author(s):  
Hiroyuki Asakura ◽  
Kentaro Teramura ◽  
Tetsuya Shishido ◽  
Tsunehiro Tanaka ◽  
Ning Yan ◽  
...  

1989 ◽  
Vol 7 (1) ◽  
pp. 21-26 ◽  
Author(s):  
W. K. Leung ◽  
Y. Hirooka ◽  
R. W. Conn ◽  
D. M. Goebel ◽  
B. Labombard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document