scholarly journals Core-shell droplets and microcapsules formed through liquid-liquid phase separation of a colloid-polymer mixture

Soft Matter ◽  
2021 ◽  
Author(s):  
Steven Dang ◽  
John Brady ◽  
Ryle Rel ◽  
Sreenidhi Surineni ◽  
Conor O'Shaughnessy ◽  
...  

Microcapsules allow for the controlled containment, transport, and release of cargoes ranging from pharmaceuticals to fragrances. Given the interest from a variety of industries in microcapsules and other core-shell structures,...

Soft Matter ◽  
2017 ◽  
Vol 13 (46) ◽  
pp. 8756-8765 ◽  
Author(s):  
Stefano Da Vela ◽  
Christian Exner ◽  
Richard Santiago Schäufele ◽  
Johannes Möller ◽  
Zhendong Fu ◽  
...  

A three-stage coarsening kinetics is revealed by USAXS in a protein–polymer mixture approaching arrested liquid–liquid phase separation.


2021 ◽  
Author(s):  
Subhadip Biswas ◽  
Biswaroop Mukherjee ◽  
Buddhapriya Chakrabarti

We study the thermodynamics of binary mixtures wherein the volume fraction of the minority component is less than the amount required to form a flat interface. Based on an explicit microscopic mean field theory, we show that the surface tension dominated equilibrium phase of a polymer mixture forms a single macroscopic droplet. A combination of elastic interactions that renormalize the surface tension, and arrests phase separation for a gel-polymer mixture, stabilize a micro-droplet phase. We compute the droplet size as a function of the interfacial tension, Flory parameter, and elastic moduli of the gel. Our results illustrate the importance of the rheological properties of the solvent in dictating the thermodynamic phase behavior of biopolymers undergoing liquid-liquid phase separation.


2021 ◽  
Vol 154 (22) ◽  
pp. 224504
Author(s):  
Florian Gußmann ◽  
Hendrik Hansen-Goos ◽  
S. Dietrich ◽  
Roland Roth

2021 ◽  
Vol 433 (2) ◽  
pp. 166731
Author(s):  
Yanxian Lin ◽  
Yann Fichou ◽  
Andrew P. Longhini ◽  
Luana C. Llanes ◽  
Pengyi Yin ◽  
...  

Author(s):  
Yanting Xing ◽  
Aparna Nandakumar ◽  
Aleksandr Kakinen ◽  
Yunxiang Sun ◽  
Thomas P. Davis ◽  
...  

2021 ◽  
Author(s):  
Kazuki Murakami ◽  
Shinji Kajimoto ◽  
Daiki Shibata ◽  
Kunisato Kuroi ◽  
Fumihiko Fujii ◽  
...  

Liquid–liquid phase separation (LLPS) plays an important role in a variety of biological processes and is also associated with protein aggregation in neurodegenerative diseases. Quantification of LLPS is necessary to...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Xie ◽  
Jing Guo ◽  
Xin Li ◽  
Jingjing Wang ◽  
...  

AbstractDevelopment of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients.


Sign in / Sign up

Export Citation Format

Share Document