Chemical Insights into Electrophilic Fluorination of Tin Oxide Layer for Photoelectrochemical Applications

Author(s):  
Gaurav Bahuguna ◽  
Mohit Verma ◽  
Ritu Gupta

Recently, there has been substantial interest in the fluorination of nanomaterial thin films used in various optoelectronic devices for optimum charge transport across semiconducting layers. The discovery of electrophilic fluorinating...

2020 ◽  
Vol 8 (18) ◽  
pp. 9364-9372 ◽  
Author(s):  
Jekyung Kim ◽  
Sage R. Bauers ◽  
Imran S. Khan ◽  
John Perkins ◽  
Bo-In Park ◽  
...  

Nitride materials with mixed ionic and covalent bonding character and resulting good charge transport properties are attractive for optoelectronic devices.


2017 ◽  
Vol 9 (16) ◽  
pp. 14197-14206 ◽  
Author(s):  
Mahdi Samadi Khoshkhoo ◽  
Santanu Maiti ◽  
Frank Schreiber ◽  
Thomas Chassé ◽  
Marcus Scheele

2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1023
Author(s):  
María Elena Sánchez-Vergara ◽  
Leon Hamui ◽  
Elizabeth Gómez ◽  
Guillermo M. Chans ◽  
José Miguel Galván-Hidalgo

The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to 82%). The complexes were characterized by UV-vis spectroscopy, IR spectroscopy, mass spectrometry, 1H, 13C, and 119Sn nuclear magnetic resonance (NMR) and elemental analysis. The spectroscopic analysis revealed that the tin atom is seven-coordinate in solution and that the carboxyl group acts as monodentate ligand. To determine the effect of the substituent on the optoelectronic properties of the organotin (IV) complexes, thin films were deposited, and the optical bandgap was obtained. A bandgap between 1.88 and 1.98 eV for the pellets and between 1.23 and 1.40 eV for the thin films was obtained. Later, different types of optoelectronic devices with architecture “contacts up/base down” were manufactured and analyzed to compare their electrical behavior. The design was intended to generate a composite based on the synthetized heptacoordinated organotin (IV) complexes embedded on the poly(3,4-ethylenedyoxithiophene)-poly(styrene sulfonate) (PEDOT:PSS). A Schottky curve at low voltages (<1.5 mV) and a current density variation of as much as ~3 × 10−5 A/cm2 at ~1.1 mV was observed. A generated photocurrent was of approximately 10−7 A and a photoconductivity between 4 × 10−9 and 7 × 10−9 S/cm for all the manufactured structures. The structural modifications on organotin (IV) complexes were focused on the electronic nature of the substituents and their ability to contribute to the electronic delocalization via the π system. The presence of the methyl group, a modest electron donor, or the non-substitution on the aromatic ring, has a reduced effect on the electronic properties of the molecule. However, a strong effect in the electronic properties of the material can be inferred from the presence of electron-withdrawing substituents like chlorine, able to reduce the gap energies.


2021 ◽  
pp. 138731
Author(s):  
Bert Scheffel ◽  
Olaf Zywitzki ◽  
Thomas Preußner ◽  
Torsten Kopte

Sign in / Sign up

Export Citation Format

Share Document