Structural and optical properties of Tin Oxide and Indium doped SnO2 thin films deposited by thermal evaporation technique

2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.

2014 ◽  
Vol 28 (13) ◽  
pp. 1450101
Author(s):  
Mehmet Işik ◽  
Hasan Hüseyin Güllü

In this paper, structural and optical properties of Ga – In – Se (GIS) thin films deposited by thermal evaporation technique have been investigated. The effect of annealing was also studied for samples annealed at temperatures between 300°C and 500°C. X-ray diffraction, energy dispersive X-ray analysis and scanning electron microscopy have been used for structural characterization. It was reported that increase of annealing temperature results with better crystallization and chemical composition of the films were almost same. Optical properties of the films were studied by transmission measurements in the wavelength range of 320–1100 nm. The direct bandgap transitions with energies in the range of 1.52 eV and 1.65 eV were revealed for the investigated GIS films. Photon energy dependence of absorption coefficient showed that there exist three distinct transition regions for films annealed at 400°C and 500°C. The quasicubic model was applied for these transitions to calculate crystal-field splitting and spin-orbit splitting energy values.


Author(s):  
J. Damisa ◽  
J. O. Emegha ◽  
I. L. Ikhioya

Lead tin sulphide (Pb-Sn-S) thin films (TFs) were deposited on fluorine-doped tin oxide (FTO) substrates via the electrochemical deposition process using lead (II) nitrate [Pb(NO3)2], tin (II) chloride dehydrate [SnCl2.2H2O] and thiacetamide [C2H5NS] precursors as sources of lead (Pb), tin (Sn) and sulphur (S). The solution of all the compounds was harmonized with a stirrer (magnetic) at 300k. In this study, we reported on the improvements in the properties (structural and optical) of Pb-Sn-S TFs by varying the deposition time. We observed from X-ray diffractometer (XRD) that the prepared material is polycrystalline in nature. UV-Vis measurements were done for the optical characterizations and the band gap values were seen to be increasing from 1.52 to 1.54 eV with deposition time. In addition to this, the absorption coefficient and refractive index were also estimated and discussed.


2019 ◽  
Vol 397 ◽  
pp. 81-87 ◽  
Author(s):  
Farid Khediri ◽  
Abdelkader Hafdallah ◽  
Mouna Bouhelal

In this work Zinc oxide thin films prepared by spray pyrolysis technique. A set of ZnO thin films were deposited with various deposition times, on glass substrate at 350 °C. The precursor solution is formed with zinc acetate in distilled methanol with 0.1 molarity. The deposition time was ranged from 2 to 8 min. The structural and optical properties of those films were examined by X-ray diffraction (XRD) and ultraviolet-visible spectrometer (UV). X-ray diffraction patterns of the ZnO thin films showed polycrystalline hexagonal wurtzite structure and the preferred orientation was along (002) plane when the grain size varied between 9.66 and 16.67nm. ZnO thin films were highly transparent in the visible with the maximum transmittance of 85% and the optical band gap was found between 3.25 and 3.28 eV.


2013 ◽  
Vol 678 ◽  
pp. 123-130 ◽  
Author(s):  
K. Kandaswamy ◽  
Panneerselvam Chirstopher Selvin ◽  
B. Nalini ◽  
I. Mohamed Abdulla ◽  
K.P. Abhilash

Thin films of Bi1.5(Sb2S3)0.5of different thickness were deposited on glass substrate by vacuum thermal evaporation method and annealed at different temperature. The elemental compositions of the films were confirmed by energy dispersive X-ray analysis (EDAX). The prepared films were structurally and morphologically characterized by X-ray diffraction (XRD) and microscopic (SEM & AFM) techniques respectively. It has been confirmed that the films possess polycrystalline nature with orthorhombic phase and the grain size of the films vary from 27.92 to 81.37 nm. The observed bandgap energies (varying from 1.787eV to 1.963 eV) of the films and its temperature dependence were estimated from optical absorption measurements.


2015 ◽  
Vol 1132 ◽  
pp. 217-223
Author(s):  
E.R. Rwenyagila ◽  
B. Agyei-Tuffour ◽  
M.G.Z. Kana ◽  
O. Akin-Ojo ◽  
W.O. Soboyejo

This work examines the modification of the structural and optical properties of ZnO thin films by control of deposition and post-treatment parameters. ZnO thin films were deposited by RF magnetron sputtering from a ceramic target locally made at SHESTCO in Abuja, Nigeria. X-ray diffraction measurements characterized the different films prior to thermal annealing as extremely amorphous with average UV-VIS transmittance spectra between 80 and 90%. Annealing at different temperatures and time spans influenced the formation of Wurtzite (002) oriented ZnO crystallites. Contrary to the crystallinity of the films, which was strongly influenced by the deposition power, the optical transmission of the films was only slightly influenced by the deposition power and it was less sensitive to the crystallinity of ZnO thin films.


2020 ◽  
Vol 307 ◽  
pp. 01033
Author(s):  
Asmaa Mrigal ◽  
Lahocine El Gana ◽  
Mouhamed Addou ◽  
Khadija Bahedi ◽  
Rajae Temsamani ◽  
...  

In this work, the effect of substrate temperature on structural and optical properties of V2O5 thin films has been characterized by X-ray diffraction (XRD); SEM and transmission. The films mince has been prepared by Reactive Chemical Spraying technology in Liquid Phase (RCSLP) on glass substrates preheated at (350, 400, 450 and 500 °C). The X-ray diffraction analysis confirms that all layers are polycrystalline, and the preferred orientation of V2O5 is the (001) plane. The morphology of V2O5 thin films are porous nature and their particle’s shape is three-dimensional. The transmittance and absorbance of thin film were measured from which the optical constants (Energy gap, Refractive index, Absorption coefficient, Extinction coefficient and Optical dielectric constant) were determined.


2013 ◽  
Vol 537 ◽  
pp. 224-228
Author(s):  
Yi Liu ◽  
Hong Mo Huang ◽  
Xiao Dong Lin

TiO2 thin films were prepared on quartz glasses by pulsed laser deposition (PLD) using a KrF laser excimer. The crystalline structure was characterized by X-ray diffraction, and the optical properties of the films were investigated using spectroscopic ellipsometry and UV-vis spectra respectively. The effects of the PLD conditions, including substrate temperature and O2 pressure on the crystalline structure and the optical properties of the films were investigated. The results indicated that there are a suitable substrate temperature and an O2 pressure which is favorable for the synthesis of anatase-type TiO2.


Sign in / Sign up

Export Citation Format

Share Document