Dual Electrocatalytic Heterostructures for Efficient Immobilization and Conversion of Polysulfides in Li-S Batteries

Author(s):  
Menghua Yang ◽  
Xuewei Wang ◽  
Jinfeng Wu ◽  
Yue Tian ◽  
Xingyu Huang ◽  
...  

Lithium sulfur (Li-S) batteries has been investigated as the ideal candidates for future high-density energy storage system with the advantages of abundant reserves, high energy density and competitive cost. The...

Author(s):  
Song Huang ◽  
Huixiang Ang ◽  
Yang Yang ◽  
Minghui Ye ◽  
Yufei Zhang ◽  
...  

Owing to promising applications in aircraft, military field and submarine etc., lithium-sulfur (Li-S) batteries with high energy density (2500 Wh·kg-1) are emerging as the next-generation energy storage system at low...


2018 ◽  
Vol 29 (1) ◽  
pp. 1805978 ◽  
Author(s):  
Yingqiang Wu ◽  
Wenxi Wang ◽  
Jun Ming ◽  
Mengliu Li ◽  
Leqiong Xie ◽  
...  

2020 ◽  
Vol 259 ◽  
pp. 114175 ◽  
Author(s):  
Gwangwoo Han ◽  
YongKeun Kwon ◽  
Joong Bae Kim ◽  
Sanghun Lee ◽  
Joongmyeon Bae ◽  
...  

Sci ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
◽  
◽  
◽  
◽  
◽  
...  

In Electrified Vehicles, the cost, efficiency, and durability of electrified vehicles are dependent on the energy storage system (ESS) components, configuration and its performance. This paper, pursuing a minimal size tactic, describes a methodology for quantitatively and qualitatively investigating the impacts of a full bandwidth load on the ESS in the HEV. However, the methodology can be extended to other electrified vehicles. The full bandwidth load, up to the operating frequency of the electric motor drive (20 kHz), is empirically measured which includes a frequency range beyond the usually covered frequency range by published standard drive cycles (up to 0.5 Hz). The higher frequency band is shown to be more efficiently covered by a Hybrid Energy Storage System (HESS) which in this paper is defined as combination of a high energy density battery, an Ultra-Capacitor (UC), an electrolytic capacitor, and a film capacitor. In this paper, the harmonic and dc currents and voltages are measured through two precision methods and then the results are used to discuss about overall HEV efficiency and durability. More importantly, the impact of the addition of high-band energy storage devices in reduction of power loss during transient events is disclosed through precision measurement based methodology.


RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20173-20183
Author(s):  
Yasai Wang ◽  
Guilin Feng ◽  
Yang Wang ◽  
Zhenguo Wu ◽  
Yanxiao Chen ◽  
...  

Lithium–sulfur batteries are considered to be promising energy storage devices owing to their high energy density, relatively low price and abundant resources.


Sci ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 26 ◽  
Author(s):  
Masood Shahverdi ◽  
Michael Mazzola ◽  
Matthew Doude ◽  
Quintin Grice ◽  
Jim Gafford ◽  
...  

In Electrified Vehicles, the cost, efficiency, and durability of electrified vehicles are dependent on the energy storage system (ESS) components, configuration and its performance. This paper, pursuing a minimal size tactic, describes a methodology for quantitatively and qualitatively investigating the impacts of a full bandwidth load on the ESS in the HEV. However, the methodology can be extended to other electrified vehicles. The full bandwidth load, up to the operating frequency of the electric motor drive (20 kHz), is empirically measured which includes a frequency range beyond the usually covered frequency range by published standard drive cycles (up to 0.5 Hz). The higher frequency band is shown to be more efficiently covered by a Hybrid Energy Storage System (HESS) which in this paper is defined as combination of a high energy density battery, an Ultra-Capacitor (UC), an electrolytic capacitor, and a film capacitor. In this paper, the harmonic and dc currents and voltages are measured through two precision methods and then the results are used to discuss about overall HEV efficiency and durability. More importantly, the impact of the addition of high-band energy storage devices in reduction of power loss during transient events is disclosed through precision measurement based methodology.


RSC Advances ◽  
2020 ◽  
Vol 10 (28) ◽  
pp. 16570-16575
Author(s):  
Meltem Yanilmaz

Lithium–sulfur (Li–S) batteries are the most promising energy storage systems owing to their high energy density.


Sign in / Sign up

Export Citation Format

Share Document