Nitrogen-induced interfacial electronic structure with optimized water and hydrogen binding abilities for efficient alkaline hydrogen evolution electrocatalysis

Author(s):  
Bocheng Qiu ◽  
Yuefeng Zhang ◽  
Xuyun Guo ◽  
Yingxin Ma ◽  
Mengmeng Du ◽  
...  

Fabricating heterostructures with dense interfacial catalytic sites is vitally essential for implementation of high-performance hydrogen evolution reaction (HER). However, the strong correlation between the adsorbed hydrogen atoms and electronegative nonmetal...

Author(s):  
Na Yao ◽  
Zhangyin Fan ◽  
Zijie Xia ◽  
Fei Wu ◽  
Pingping Zhao ◽  
...  

Developing cost-efficient electrocatalysts with high-performance and durability toward alkaline hydrogen evolution reaction (HER) is essential for the application of alkaline electrolyzer, but remains a big challenge. Here, we report the...


CrystEngComm ◽  
2021 ◽  
Author(s):  
Qian Zhang ◽  
Shuihua Tang ◽  
Lieha Shen ◽  
Weixiang Yang ◽  
Zhen Tang ◽  
...  

Developing cost-effective and high-performance electrocatalysts for hydrogen evolution reaction (HER) are imperative thanks to rapid increase of fuel-cell driven vehicles. Tungsten (W) possesses advantages of optimized hydrogen adsorption energy and...


2019 ◽  
Vol 7 (33) ◽  
pp. 19531-19538 ◽  
Author(s):  
Qi Hu ◽  
Guomin Li ◽  
Xiaowan Huang ◽  
Ziyu Wang ◽  
Hengpan Yang ◽  
...  

The electronic structures of single atomic Ru (SA-Ru) were suitably optimized by nearby Ru NPs for boosting the hydrogen evolution reaction (HER) over SA-Ru.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yamei Sun ◽  
Ziqian Xue ◽  
Qinglin Liu ◽  
Yaling Jia ◽  
Yinle Li ◽  
...  

AbstractDeveloping high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 547
Author(s):  
Zengguang Tang ◽  
Liujiang Zhang ◽  
Zhenhuang Su ◽  
Zhen Wang ◽  
Li Chen ◽  
...  

In this article, CsPbI2Br perovskite thin films were spin-coated on FTO, on which CuPc was deposited by thermal evaporation. The electronic structure at the CsPbI2Br/CuPc interface was examined during the CuPc deposition by in situ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements. No downward band bending was resolved at the CsPbI2Br side, whereas there is ~0.23 eV upward band bending as well as a dipole of ~0.08 eV identified at the molecular side. Although the hole injection barrier as indicated by the energy gap from CsPbI2Br valance band maximum (VBM) to CuPc highest occupied molecular orbital (HOMO) was estimated to be ~0.26 eV, favoring hole extraction from CsPbI2Br to CuPc, the electron blocking barrier of ~0.04 eV as indicated by the offset between CsPbI2Br conduction band minimum (CBM) and CuPc lowest unoccupied molecular orbital (LUMO) is too small to efficiently block electron transfer. Therefore, the present experimental study implies that CuPc may not be a promising hole transport material for high-performance solar cells using CsPbI2Br as active layer.


Sign in / Sign up

Export Citation Format

Share Document