Selective selenization of mixed-linker Ni-MOFs: NiSe2@NC core-shell nano-octahedrons with tunable interfacial electronic structure for hydrogen evolution reaction

2020 ◽  
Vol 272 ◽  
pp. 118976 ◽  
Author(s):  
Zhaodi Huang ◽  
Shuai Yuan ◽  
Tiantian Zhang ◽  
Bin Cai ◽  
Ben Xu ◽  
...  
Author(s):  
Bocheng Qiu ◽  
Yuefeng Zhang ◽  
Xuyun Guo ◽  
Yingxin Ma ◽  
Mengmeng Du ◽  
...  

Fabricating heterostructures with dense interfacial catalytic sites is vitally essential for implementation of high-performance hydrogen evolution reaction (HER). However, the strong correlation between the adsorbed hydrogen atoms and electronegative nonmetal...


2020 ◽  
Vol 8 (44) ◽  
pp. 23323-23329
Author(s):  
Jing Hu ◽  
Siwei Li ◽  
Yuzhi Li ◽  
Jing Wang ◽  
Yunchen Du ◽  
...  

Crystalline–amorphous Ni–Ni(OH)2 core–shell assembled nanosheets exhibit outstanding electrocatalytic activity and stability for hydrogen evolution under alkaline conditions.


2019 ◽  
Vol 7 (33) ◽  
pp. 19531-19538 ◽  
Author(s):  
Qi Hu ◽  
Guomin Li ◽  
Xiaowan Huang ◽  
Ziyu Wang ◽  
Hengpan Yang ◽  
...  

The electronic structures of single atomic Ru (SA-Ru) were suitably optimized by nearby Ru NPs for boosting the hydrogen evolution reaction (HER) over SA-Ru.


2012 ◽  
Vol 48 (7) ◽  
pp. 1063-1065 ◽  
Author(s):  
Irene J. Hsu ◽  
Yannick C. Kimmel ◽  
Xiaoqiang Jiang ◽  
Brian G. Willis ◽  
Jingguang G. Chen

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yamei Sun ◽  
Ziqian Xue ◽  
Qinglin Liu ◽  
Yaling Jia ◽  
Yinle Li ◽  
...  

AbstractDeveloping high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.


2018 ◽  
Vol 10 (40) ◽  
pp. 34147-34152 ◽  
Author(s):  
Yiqi Luo ◽  
Xuan Luo ◽  
Geng Wu ◽  
Zhijun Li ◽  
Guanzhong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document