Efficient, Thermally Stable Poly(3-Hexylthiophene)-Based Organic Solar Cells Achieved by Non-Covalently Fused-Ring Small Molecule Acceptors

Author(s):  
Daehee Han ◽  
Yunghee Han ◽  
Youngkwon Kim ◽  
Jin-Woo Lee ◽  
Dahyun Jeong ◽  
...  

Organic solar cells (OSCs) based on poly(3-hexylthiophene) (P3HT) have achieved a significant enhancement of the power conversion efficiency (PCE), mainly driven by the development of non-fullerene small-molecule acceptors. However, their...

2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


2015 ◽  
Vol 3 (2) ◽  
pp. 447-452 ◽  
Author(s):  
Yifan Wang ◽  
Xingang Zhao ◽  
Xiaowei Zhan

Inverted organic solar cells based on a small molecule donor and a polymer acceptor were fabricated using a layer by layer solution process, which exhibited a power conversion efficiency up to 1.12%.


Author(s):  
Jinzhao Qin ◽  
Zhihao Chen ◽  
Pengqing Bi ◽  
Yang Yang ◽  
Jianqi Zhang ◽  
...  

By constructing a ternary cell with a B1:BO-2Cl:BO-4Cl donor:acceptors combination, an outstanding power conversion efficiency (PCE) of 17.0% (certified to be 16.9%) has been realized for all-small-molecule organic solar cells (ASM-OSCs).


Author(s):  
Chuang Yao ◽  
Yezi Yang ◽  
Lei Li ◽  
Maolin Bo ◽  
Cheng Peng ◽  
...  

Cyano-group (−C≡N) is an electron-withdrawing group, which has been widely used to construct high-performance fused-ring electron acceptors (FREAs). Benefiting from these FREAs, the power conversion efficiency of organic solar cells...


2015 ◽  
Vol 3 (5) ◽  
pp. 1910-1914 ◽  
Author(s):  
Huitao Bai ◽  
Yifan Wang ◽  
Pei Cheng ◽  
Jiayu Wang ◽  
Yao Wu ◽  
...  

A novel small molecule based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone was synthesized and used as an electron acceptor in solution processed organic solar cells, which exhibited a power conversion efficiency as high as 3.93%.


2014 ◽  
Vol 2 (36) ◽  
pp. 7614-7620 ◽  
Author(s):  
Jie Min ◽  
Yuriy N. Luponosov ◽  
Alexander N. Solodukhin ◽  
Nina Kausch-Busies ◽  
Sergei A. Ponomarenko ◽  
...  

A star-shaped D–π–A small molecule based on a tris(2-methoxyphenyl)amine donor unit for solution-processed organic solar cells achieves a power conversion efficiency up to 4.38%.


2016 ◽  
Vol 4 (4) ◽  
pp. 1486-1494 ◽  
Author(s):  
Yuze Lin ◽  
Jiayu Wang ◽  
Tengfei Li ◽  
Yang Wu ◽  
Cheng Wang ◽  
...  

Organic solar cells based on monodisperse fused-ring oligomer molecule donor and acceptor blends exhibit a power conversion efficiency of over 6%; high crystallinity and small phase separation coexist in the blends.


Author(s):  
Tainan Duan ◽  
Chen Qianqian ◽  
Qianguang Yang ◽  
Dingqin Hu ◽  
Guilong Cai ◽  
...  

Attributed to the rapid development of benzodithiophene (BDT) centered small molecule donors, all small molecule organic solar cells (ASM-OSCs) have achieved comparable power conversion efficiency (PCE) (>15%) along with high...


Sign in / Sign up

Export Citation Format

Share Document