Laser-patterned carbon coatings on flexible and optically transparent plastic substrates for advanced biomedical sensing and implant applications

Author(s):  
Pratik Joshi ◽  
Parand R. Riley ◽  
Warren Denning ◽  
Shubhangi Shukla ◽  
Nayna Khosla ◽  
...  

Plasma and laser-based processing for tailoring DLC thin film properties for state-of-the-art wearable sensing applications.

1998 ◽  
Vol 508 ◽  
Author(s):  
Gregory N. Parsons ◽  
Chien-Sheng Yang ◽  
Tonya M. Klein ◽  
Laura Smith

AbstractThis article presents mechanisms for low temperature (<150°C) rf plasma enhanced chemical vapor deposition of silicon and silicon nitride thin films that lead to sufficient electronic quality for thin film transistor (TFT) fabrication and operation. For silicon deposition, hydrogen abstraction and etching, and silicon disproportionation reactions are identified that can lead to optimized hydrogen concentration and bonding environments at <150°C. Nitrogen dilution of SiH4/NH3 mixtures during silicon nitride deposition at low temperatures helps promote N-H bonding, leading to reduced charge trapping. Good quality amorphous silicon TFT's fabricated with a maximum processing temperature of 110 °C are demonstrated on flexible transparent plastic substrates. Transistors formed with the same process on glass and plastic show linear mobilities of 0.33 and 0.12 cm2/Vs, respectively, with ION/IOFF ratios > 106.


2016 ◽  
Vol 213 (7) ◽  
pp. 1955-1963 ◽  
Author(s):  
Karen Wilken ◽  
Ulrich W. Paetzold ◽  
Matthias Meier ◽  
Gani M. Ablayev ◽  
Evgeny I. Terukov ◽  
...  

1998 ◽  
Vol 507 ◽  
Author(s):  
Gregory N. Parsons ◽  
Chien-Sheng Yang ◽  
Tonya M. Klein ◽  
Laura Smith

ABSTRACTThis article presents mechanisms for low temperature (<150°C) rf plasma enhanced chemical vapor deposition of silicon and silicon nitride thin films that lead to sufficient electronic quality for thin film transistor (TFT) fabrication and operation. For silicon deposition, hydrogen abstraction and etching, and silicon disproportionation reactions are identified that can lead to optimized hydrogen concentration and bonding environments at <150°C. Nitrogen dilution of SiH4/NH3 mixtures during silicon nitride deposition at low temperatures helps promote N-H bonding, leading to reduced charge trapping. Good quality amorphous silicon TFT's fabricated with a maximum processing temperature of 110°C are demonstrated on flexible transparent plastic substrates. Transistors formed with the same process on glass and plastic show linear mobilities of 0.33 and 0.12 cm2/Vs, respectively, with ION/IOFF ratios > 106.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Ehsanollah Fathi ◽  
Andrei Sazonov

AbstractIn this work, we optimized different thin film silicon layers in a single junction p-i-n solar cell at deposition temperature of 150 °C. Using the optimized doped and undoped layers, 0.5 cm2 test cells fabricated both on glass and polyethylene naphthalate (PEN) substrates. The cells show identical open circuit voltages and fill factors, whereas the short circuit current and consequently the efficiency of the cell fabricated on glass is higher than the efficiency of 3.99% of the cell fabricated on PEN substrate.


2018 ◽  
Vol 28 (4) ◽  
pp. 247-253
Author(s):  
Dae-Gyu Yang ◽  
Hyoung-Do Kim ◽  
Jong-Heon Kim ◽  
Hyun-Suk Kim

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 478
Author(s):  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
Yap Wing Fen ◽  
Silvan Saleviter ◽  
Narong Chanlek ◽  
Hideki Nakajima ◽  
...  

In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan–graphene oxide (chitosan–GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR–chitosan–GO thin film, while for CdS QD–chitosan–GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian–Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan–GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR–chitosan–GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.


Sign in / Sign up

Export Citation Format

Share Document