Characterization of surface state structure on the (111) face of a clean copper single crystal using mercury adsorption and angular-resolved photoelectron spectroscopy

Author(s):  
D. Robert Lloyd ◽  
Charles M. Quinn ◽  
Neville V. Richardson
2012 ◽  
Vol 16 (01) ◽  
pp. 154-162 ◽  
Author(s):  
Edwin W.Y. Wong ◽  
Daniel B. Leznoff

The reduction of magnesium phthalocyanine (MgPc) with 2.2 equivalents of potassium graphite in 1,2-dimethoxyethane (DME) gives [K2(DME)4]PcMg(OH)(1) in 67% yield. Compound 1 was structurally characterized using single crystal X-ray crystallography and was found to be a monomeric, heterometallic complex consisting of a μ3-OH ligand that bridges a [MgIIPc3-]- anion to two potassium cations solvated by four DME molecules. An absorption spectrum of 1 confirms the Pc ligand is singly reduced and has a 3–charge. The solid-state structure of 1 does not indicate breaking of the aromaticity of the Pc ligand. Compound 1 is only the second Pc3- complex and the first reduced MgPc to be isolated and structurally characterized.


2011 ◽  
Vol 80 (10) ◽  
pp. 1001-1007 ◽  
Author(s):  
W. Paszkowicz ◽  
P. Romanowski ◽  
J. Bąk-Misiuk ◽  
W. Wierzchowski ◽  
K. Wieteska ◽  
...  

2001 ◽  
Vol 184 (1-4) ◽  
pp. 167-172 ◽  
Author(s):  
J.T. Wolan ◽  
B.A. Grayson ◽  
G. Akshoy ◽  
S.E. Saddow

2015 ◽  
Vol 2 (2) ◽  
pp. 70-73
Author(s):  
Kannan.P ◽  
Thambidurai.S ◽  
Suresh.N

Growth of optically transparent single crystals of thiourea succinic acid (TUSA) was grown successfully from aqueous solution by slow evaporation technique. The crystal structure was elucidated using the single crystal XRD. The various functional groups and the modes of vibrations were identified by FT-IR spectroscopic analysis. The optical absorption studies indicate that the optical transparency window is quite wide making its suitable for NLO applications. Thermal stability of the crown crystal carried out by TGA-DTA analysis.


Author(s):  
J. Zimmer ◽  
D. Nielsen ◽  
T.A. Anderson ◽  
M. Schade ◽  
N. Saha ◽  
...  

Abstract The p-n junction of a GaAs light emitting diode is fabricated using liquid phase epitaxy (LPE). The junction is grown on a Si doped (~1018/cm3) GaAs substrate. Intermittent yield loss due to forward voltage snapback was observed. Historically, out of specification forward voltage (Vf) parameters have been correlated to abnormalities in the junction formation. Scanning electron (SEM) and optical microscopy of cleaved and stained samples revealed a continuous layer of material approximately 2.5 to 3.0 urn thick at the n-epi/substrate interface. Characterization of a defective wafer via secondary ion mass spectroscopy (SIMS) revealed an elevated concentration of O throughout the region containing the defect. X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) data taken from a wafer prior to growth of the epi layers did not reveal any unusual oxidation or contamination. Extensive review of the processing data suggested LPE furnace pressure was the obvious source of variability. Processing wafers through the LPE furnace with a slight positive H2 gas pressure has greatly reduced the occurrence of this defect.


Sign in / Sign up

Export Citation Format

Share Document