Spontaneous ignition and thermal runaway in closed and open systems. Part 2.—Ignition and extinction in the adiabatic continuous-flow well stirred reactor (c.s.t.r.) for reactions of order m

Author(s):  
Peter Gray ◽  
Jeremy Mullins
Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 380
Author(s):  
Aekjuthon Phounglamcheik ◽  
Nils Johnson ◽  
Norbert Kienzl ◽  
Christoph Strasser ◽  
Kentaro Umeki

Biochar is attracting attention as an alternative carbon/fuel source to coal in the process industry and energy sector. However, it is prone to self-heating and often leads to spontaneous ignition and thermal runaway during storage, resulting in production loss and health risks. This study investigates biochar self-heating upon its contact with O2 at low temperatures, i.e., 50–300 °C. First, kinetic parameters of O2 adsorption and CO2 release were measured in a thermogravimetric analyzer using biochar produced from a pilot-scale pyrolysis process. Then, specific heat capacity and heat of reactions were measured in a differential scanning calorimeter. Finally, a one-dimensional transient model was developed to simulate self-heating in containers and gain insight into the influences of major parameters. The model showed a good agreement with experimental measurement in a closed metal container. It was observed that char temperature slowly increased from the initial temperature due to heat released during O2 adsorption. Thermal runaway, i.e., self-ignition, was observed in some cases even at the initial biochar temperature of ca. 200 °C. However, if O2 is not permeable through the container materials, the temperature starts decreasing after the consumption of O2 in the container. The simulation model was also applied to examine important factors related to self-heating. The results suggested that self-heating can be somewhat mitigated by decreasing the void fraction, reducing storage volume, and lowering the initial char temperature. This study demonstrated a robust way to estimate the cooling demands required in the biochar production process.


1991 ◽  
Vol 30 (20) ◽  
pp. 3837-3842 ◽  
Author(s):  
Benedito S. Lima Neto ◽  
Katherine Howland. Ford ◽  
Alvaro J. Pardey ◽  
Robert G. Rinker ◽  
Peter C. Ford

The oxidation of hydrogen is the classic example of an ‘isothermal’, branched-chain reaction, and it is studied here from experimental and theoretical standpoints as the natural prototype of branched-chain reactions in open systems. With an inflow of reactants and a matching out-­flow of products, ignition now occurs as a repetitive, oscillatory sequence of events. By identifying the critical conditions as the marginal loss of stability of the stationary-state reaction, a simple criterion for ignition can be derived. This criterion is seen to be a generalization of the elementary treatments, going over to the classical results for closed vessels in the limit of zero flow-rate; it illustrates the stabilizing effect of opening the system. The experimental location of the p ─ T a limit for an equimolar H 2 +O 2 mixture in a continuous-flow, stirred-tank reactor (c. s. t. r.) reported here, shows good agreement with the new predictions (from a simple isothermal kinetic model). Extensive measurements of extents of reactant consumption and of the (small) degree of self-heating are also presented. These lead to rates of reaction and rates of heat release. We show how these are related under conditions of steady-state (non-explosive) reaction and, hence, how accurate measurements of the small temperature-excess can be used to give measurements of the reaction rate.


2020 ◽  
Vol 22 (19) ◽  
pp. 6437-6443
Author(s):  
Cheng-Kou Liu ◽  
Meng-Yi Chen ◽  
Xin-Xin Lin ◽  
Zheng Fang ◽  
Kai Guo

A catalyst-, oxidant-, acidic solvent- and quaternary ammonium salt-free electrochemical para-selective hydroxylation of N-arylamides at rt in batch and continuous-flow was developed.


1990 ◽  
Vol 87 ◽  
pp. 1159-1172 ◽  
Author(s):  
P Dagaut ◽  
M Cathonnet ◽  
B Aboussi ◽  
JC Boettner

Sign in / Sign up

Export Citation Format

Share Document