Molecular motion in the glassy state. The effect of temperature and pressure on the dielectric ? relaxation of polyvinyl chloride

1971 ◽  
Vol 67 ◽  
pp. 1971 ◽  
Author(s):  
Graham Williams ◽  
David C. Watts
2020 ◽  
Vol 117 ◽  
pp. 107965
Author(s):  
M.Yu. Petrushina ◽  
E.S. Dedova ◽  
K.V. Yusenko ◽  
A.S. Portnyagin ◽  
E.K. Papynov ◽  
...  

1952 ◽  
Vol 44 (1) ◽  
pp. 211-212 ◽  
Author(s):  
E. J. Bradbury ◽  
Dorothy McNulty ◽  
R. I. Savage ◽  
E. E. McSweeney

1992 ◽  
Vol 276 ◽  
Author(s):  
D-G. Oei ◽  
S. L. McCarthy

ABSTRACTMeasurements of the residual stress in polysilicon films made by Low Pressure Chemical Vapor Deposition (LPCVD) at different deposition pressures and temperatures are reported. The stress behavior of phosphorus (P)-ion implanted/annealed polysilicon films is also reported. Within the temperature range of deposition, 580 °C to 650 °C, the stress vs deposition temperature plot exhibits a transition region in which the stress of the film changes from highly compressive to highly tensile and back to highly compressive as the deposition temperature increases. This behavior was observed in films that were made by the LPCVD process at reduced pressures of 210 and 320 mTORR. At deposition temperatures below 590 °C the deposit is predominantly amorphous, and the film is highly compressive; at temperatures above 610 °C (110) oriented polycrystalline silicon is formed exhibiting high compressive residual stress.


Nanoscale ◽  
2015 ◽  
Vol 7 (19) ◽  
pp. 8803-8810 ◽  
Author(s):  
Ya. Grosu ◽  
G. Renaudin ◽  
V. Eroshenko ◽  
J.-M. Nedelec ◽  
J.-P. E. Grolier

Author(s):  
Florian Pabst ◽  
Zaneta Wojnarowska ◽  
Marian Paluch ◽  
Thomas Blochowicz

The temperature and pressure dependence of two dynamic processes in the dielectric spectra of five supercooled ionic liquids equipped with octyl-chains are reported. The microscopic origin of these processes is discussed.


Author(s):  
Viktor Ivanovych Булавин ◽  
Ivan Nikolajevych V’unik ◽  
Andrii Viktorovych Kramarenko ◽  
Alexandr Ivanovych Rusinov

The diffusion coefficient  and the distance of translational displacement of Li+, Na+ K+, Cs+, Cl– and Br– ions  in water at 298.15 K – 423.15 K (25 K step) and pressure from 0.0981 to 784.5 MPa (98.1 MPa step) were calculated from the literature data on limiting molar electrical conductivity. The  values for these ions increase with pressure growth from 0.0981  to 98.1 MPa at 298.15 K. Further pressure increase (up to 785 MPa) leads to decrease in . Temperature growth under isobaric conditions leads to an increase in . Parameter (– ri) (deviation from the Stokes–Einstein law, ri is ion structural radius) was used as a criterion for the type of ion solvation. It is shown that Li+ and Na+ ions behave as cosmotropes, or positively solvated structure–forming ions having (– ri) > 0. The Cs+, Cl–, Br– ions behave as chaotropes, or negatively solvated structure–breaking ions having (– ri) < 0. For the K+ ion, the (– ri) deviation is alternating. At 0.0981 MPa and 298.15 K, the K+ ion is a chaotrope. But at 320 K (Tlim) parameter (– ri) = 0. It corresponds to the transition from negative to positive solvation. Above Tlim at P = const, the K+ ion is a cosmotrope. At 298.15 K and up to 98.1 MPa, the pressure causes the same change in the (– ri) deviation as the temperature. On the contrary, at 320 K and higher, the pressure affects the near hydration in the direction opposite to the temperature.


2019 ◽  
Vol 330 ◽  
pp. 16-23 ◽  
Author(s):  
Rahman Zeynali ◽  
Kamran Ghasemzadeh ◽  
Alireza Behrooz Sarand ◽  
Farshad Kheiri ◽  
Angelo Basile

Sign in / Sign up

Export Citation Format

Share Document