scholarly journals Comparative analysis of the influence of the high-mobility group box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocorticoid receptors

2002 ◽  
Vol 361 (1) ◽  
pp. 97 ◽  
Author(s):  
Guy VERRIJDT ◽  
Annemie HAELENS ◽  
Erik SCHOENMAKERS ◽  
Wilfried ROMBAUTS ◽  
Frank CLAESSENS
2001 ◽  
Vol 361 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Guy VERRIJDT ◽  
Annemie HAELENS ◽  
Erik SCHOENMAKERS ◽  
Wilfried ROMBAUTS ◽  
Frank CLAESSENS

We performed a comparative analysis of the effect of high-mobility group box protein 1 (HMGB1) on DNA binding by the DNA-binding domains (DBDs) of the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. The affinity of the DBDs of the different receptors for the tyrosine aminotransferase glucocorticoid response element, a classical high-affinity binding element, was augmented up to 7-fold by HMGB1. We found no major differences in the effects of HMGB1 on DNA binding between the different steroid hormone receptors. In transient transfection assays, however, HMGB1 significantly enhances the activity of the glucocorticoid and progesterone receptors but not the androgen or mineralocorticoid receptor. We also investigated the effect of HMGB1 on the binding of the androgen receptor DBD to a subclass of directly repeated response elements that is recognized exclusively by the androgen receptor and not by the glucocorticoid, progesterone or mineralocorticoid receptor. Surprisingly, a deletion of 26 amino acid residues from the C-terminal extension of the androgen receptor DBD does not influence DNA binding but destroys its sensitivity to HMGB1. Deletion of the corresponding fragment in the DBDs of the glucocorticoid, progesterone and mineralocorticoid receptor destroyed their DNA binding. This 26-residue fragment is therefore essential for the influence of HMGB1 on DNA recognition by all steroid hormone receptors that were tested. However, it is dispensable for DNA binding by the androgen receptor.


1999 ◽  
Vol 19 (6) ◽  
pp. 3931-3939 ◽  
Author(s):  
Brigitte Bourachot ◽  
Moshe Yaniv ◽  
Christian Muchardt

ABSTRACT The mammalian SWI-SNF complex is a chromatin-remodelling machinery involved in the modulation of gene expression. Its activity relies on two closely related ATPases known as brm/SNF2α and BRG-1/SNF2β. These two proteins can cooperate with nuclear receptors for transcriptional activation. In addition, they are involved in the control of cell proliferation, most probably by facilitating p105Rb repression of E2F transcriptional activity. In the present study, we have examined the ability of various brm/SNF2α deletion mutants to reverse the transformed phenotype ofras-transformed fibroblasts. Deletions within the p105Rb LXCXE binding motif or the conserved bromodomain had only a moderate effect. On the other hand, a 49-amino-acid segment, rich in lysines and arginines and located immediately downstream of the p105Rb interaction domain, appeared to be essential in this assay. This region was also required for cooperation of brm/SNF2α with the glucocorticoid receptor in transfection experiments, but only in the context of a reporter construct integrated in the cellular genome. The region has homology to the AT hooks present in high-mobility-group protein I/Y DNA binding domains and is required for the tethering of brm/SNF2α to chromatin.


1998 ◽  
Vol 12 (5) ◽  
pp. 664-674 ◽  
Author(s):  
Lorene E. Romine ◽  
Jennifer R. Wood ◽  
LuAnne A. Lamia ◽  
Paul Prendergast ◽  
Dean P. Edwards ◽  
...  

Abstract We have examined the ability of the high-mobility group protein 1 (HMG1) to alter binding of the estrogen receptor DNA-binding domain (DBD) to the estrogen response element (ERE). HMG1 dramatically enhanced binding of purified, bacterially expressed DBD to the consensus vitellogenin A2 ERE in a dose-dependent manner. The ability of HMG1 to stabilize the DBD-ERE complex resulted in part from a decrease in the dissociation rate of the DBD from the ERE. Antibody supershift experiments demonstrated that HMG1 was also capable of forming a ternary complex with the ERE-bound DBD in the presence of HMG1-specific antibody. HMG1 did not substantially affect DBD-ERE contacts as assessed by methylation interference assays, nor did it alter the ability of the DBD to induce distortion in ERE-containing DNA fragments. Because HMG1 dramatically enhanced estrogen receptor DBD binding to the ERE, and the DBD is the most highly conserved region among the nuclear receptor superfamily members, HMG1 may function to enhance binding of other nuclear receptors to their respective response elements and act in concert with coactivator proteins to regulate expression of hormone-responsive genes.


2021 ◽  
Vol 143 (39) ◽  
pp. 16030-16040
Author(s):  
Aaron T. Balana ◽  
Anirban Mukherjee ◽  
Harsh Nagpal ◽  
Stuart P. Moon ◽  
Beat Fierz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document