scholarly journals G-protein-coupled receptor kinase-2 is a critical regulator of TNFα signaling in colon epithelial cells

2017 ◽  
Vol 474 (14) ◽  
pp. 2301-2313 ◽  
Author(s):  
Michael D. Steury ◽  
Peter C. Lucas ◽  
Laura R. McCabe ◽  
Narayanan Parameswaran

G-protein-coupled receptor kinase-2 (GRK2) belongs to the GRK family of serine/threonine protein kinases critical in the regulation of G-protein-coupled receptors. Apart from this canonical role, GRK2 is also involved in several signaling pathways via distinct intracellular interactomes. In the present study, we examined the role of GRK2 in TNFα signaling in colon epithelial cell–biological processes including wound healing, proliferation, apoptosis, and gene expression. Knockdown of GRK2 in the SW480 human colonic cells significantly enhanced TNFα-induced epithelial cell wound healing without any effect on apoptosis/proliferation. Consistent with wound-healing effects, GRK2 knockdown augmented TNFα-induced matrix metalloproteinases (MMPs) 7 and 9, as well as urokinase plasminogen activator (uPA; factors involved in cell migration and wound healing). To assess the mechanism by which GRK2 affects these physiological processes, we examined the role of GRK2 in TNFα-induced MAPK and NF-κB pathways. Our results demonstrate that while GRK2 knockdown inhibited TNFα-induced IκBα phosphorylation, activation of ERK was significantly enhanced in GRK2 knockdown cells. Our results further demonstrate that GRK2 inhibits TNFα-induced ERK activation by inhibiting generation of reactive oxygen species (ROS). Together, these data suggest that GRK2 plays a critical role in TNFα-induced wound healing by modulating MMP7 and 9 and uPA levels via the ROS–ERK pathway. Consistent with in vitro findings, GRK2 heterozygous mice exhibited enhanced intestinal wound healing. Together, our results identify a novel role for GRK2 in TNFα signaling in intestinal epithelial cells.

2014 ◽  
Vol 1 (4) ◽  
pp. e969166 ◽  
Author(s):  
Verónica Rivas ◽  
Laura Nogués ◽  
Clara Reglero ◽  
Federico Mayor ◽  
Petronila Penela

2016 ◽  
Vol 28 (3) ◽  
pp. 190-203 ◽  
Author(s):  
Tiju Theccanat ◽  
Jennifer L. Philip ◽  
Abdur M. Razzaque ◽  
Nicholas Ludmer ◽  
Jinju Li ◽  
...  

FEBS Letters ◽  
2000 ◽  
Vol 473 (3) ◽  
pp. 280-284 ◽  
Author(s):  
Jennifer L.R. Freeman ◽  
Julie A. Pitcher ◽  
Xiaolin Li ◽  
Vann Bennett ◽  
Robert J. Lefkowitz

Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1625-1636 ◽  
Author(s):  
Jessica Gambardella ◽  
Daniela Sorriento ◽  
Maria Bova ◽  
Mariarosaria Rusciano ◽  
Stefania Loffredo ◽  
...  

Excessive BK (bradykinin) stimulation is responsible for the exaggerated permeabilization of the endothelium in angioedema. However, the molecular mechanisms underlying these responses have not been investigated. BK receptors are Gq-protein-coupled receptors phosphorylated by GRK2 (G protein-coupled receptor kinase 2) with a hitherto unknown biological and pathophysiological significance. In the present study, we sought to identify the functional role of GRK2 in angioedema through the regulation of BK signaling. We found that the accumulation of cytosolic Ca 2+ in endothelial cells induced by BK was sensitive to GRK2 activity, as it was significantly augmented by inhibiting the kinase. Accordingly, permeabilization and NO production induced by BK were enhanced, as well. In vivo, mice with reduced GRK2 levels in the endothelium (Tie2-CRE/GRK2 fl+/fl − ) exhibited an increased response to BK in terms of vascular permeability and extravasation. Finally, patients with reduced GRK2 levels displayed a severe phenotype of angioedema. Taken together, these findings establish GRK2 as a novel pivotal regulator of BK signaling with an essential role in the pathophysiology of vascular permeability and angioedema.


Sign in / Sign up

Export Citation Format

Share Document