The Gcn2–eIF2α pathway connects iron and amino acid homeostasis in Saccharomyces cerevisiae

2018 ◽  
Vol 475 (8) ◽  
pp. 1523-1534 ◽  
Author(s):  
Marcos Caballero-Molada ◽  
María D. Planes ◽  
Helena Benlloch ◽  
Sergio Atares ◽  
Miguel A. Naranjo ◽  
...  

In eukaryotic cells, amino acid biosynthesis is feedback-inhibited by amino acids through inhibition of the conserved protein kinase Gcn2. This decreases phosphorylation of initiation factor eIF2α, resulting in general activation of translation but inhibition of translation of mRNA for transcription factor (TF) Gcn4 in yeast or ATF4 in mammals. These TFs are positive regulators of amino acid biosynthetic genes. As several enzymes of amino acid biosynthesis contain iron–sulfur clusters (ISCs) and iron excess is toxic, iron and amino acid homeostasis should be co-ordinated. Working with the yeast Saccharomyces cerevisiae, we found that amino acid supplementation down-regulates expression of genes for iron uptake and decreases intracellular iron content. This cross-regulation requires Aft1, the major TF activated by iron scarcity, as well as Gcn2 and phosphorylatable eIF2α but not Gcn4. A mutant with constitutive activity of Gcn2 (GCN2c) shows less repression of iron transport genes by amino acids and increased nuclear localization of Aft1 in an iron-poor medium, and increases iron content in this medium. As Aft1 is activated by depletion of mitochondrial ISCs, it is plausible that the Gcn2–eIF2α pathway inhibits the formation of these complexes. Accordingly, the GCN2c mutant has strongly reduced activity of succinate dehydrogenase, an iron–sulfur mitochondrial enzyme, and is unable to grow in media with very low iron or with galactose instead of glucose, conditions where formation of ISCs is specially needed. This mechanism adjusts the uptake of iron to the needs of amino acid biosynthesis and expands the list of Gcn4-independent activities of the Gcn2–eIF2α regulatory system.

1992 ◽  
Vol 12 (5) ◽  
pp. 2154-2164 ◽  
Author(s):  
D J DeMarini ◽  
M Winey ◽  
D Ursic ◽  
F Webb ◽  
M R Culbertson

The SEN1 gene, which is essential for growth in the yeast Saccharomyces cerevisiae, is required for endonucleolytic cleavage of introns from all 10 families of precursor tRNAs. A mutation in SEN1 conferring temperature-sensitive lethality also causes in vivo accumulation of pre-tRNAs and a deficiency of in vitro endonuclease activity. Biochemical evidence suggests that the gene product may be one of several components of a nuclear-localized splicing complex. We have cloned the SEN1 gene and characterized the SEN1 mRNA, the SEN1 gene product, the temperature-sensitive sen1-1 mutation, and three SEN1 null alleles. The SEN1 gene corresponds to a 6,336-bp open reading frame coding for a 2,112-amino-acid protein (molecular mass, 239 kDa). Using antisera directed against the C-terminal end of SEN1, we detect a protein corresponding to the predicted molecular weight of SEN1. The SEN1 protein contains a leucine zipper motif, consensus elements for nucleoside triphosphate binding, and a potential nuclear localization signal sequence. The carboxy-terminal 1,214 amino acids of the SEN1 protein are essential for growth, whereas the amino-terminal 898 amino acids are dispensable. A sequence of approximately 500 amino acids located in the essential region of SEN1 has significant similarity to the yeast UPF1 gene product, which is involved in mRNA turnover, and the mouse Mov-10 gene product, whose function is unknown. The mutation that creates the temperature-sensitive sen1-1 allele is located within this 500-amino-acid region, and it causes a substitution for an amino acid that is conserved in all three proteins.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


1993 ◽  
Vol 13 (3) ◽  
pp. 1920-1932 ◽  
Author(s):  
J L Bushman ◽  
A I Asuru ◽  
R L Matts ◽  
A G Hinnebusch

Starvation of the yeast Saccharomyces cerevisiae for an amino acid signals increased translation of GCN4, a transcriptional activator of amino acid biosynthetic genes. We have isolated and characterized the GCD6 and GCD7 genes and shown that their products are required to repress GCN4 translation under nonstarvation conditions. We find that both GCD6 and GCD7 show sequence similarities to components of a high-molecular-weight complex (the GCD complex) that appears to be the yeast equivalent of translation initiation factor 2B (eIF-2B), which catalyzes GDP-GTP exchange on eIF-2. Furthermore, we show that GCD6 is 30% identical to the largest subunit of eIF-2B isolated from rabbit reticulocytes. Deletion of either GCD6 or GCD7 is lethal, and nonlethal mutations in these genes increase GCN4 translation in the same fashion described for defects in known subunits of eIF-2 or the GCD complex; derepression of GCN4 is dependent on short open reading frames in the GCN4 mRNA leader and occurs independently of eIF-2 alpha phosphorylation by protein kinase GCN2, which is normally required to stimulate GCN4 translation. Together, our results provide evidence that GCD6 and GCD7 are subunits of eIF-2B in S. cerevisiae and further implicate this GDP-GTP exchange factor in gene-specific translational control.


1980 ◽  
Vol 35 (3-4) ◽  
pp. 258-261
Author(s):  
A. Martin Gonzalez ◽  
M. T. Izquierdo

Abstract Electric Field Electric fields of sinusoidal waves have been applied in cultures of Azotobacter vinelandii, with potentials between 0 V and 10 V, intensities from 0 mA to 16 mA and frequencies between 5 Hz and 200 KHz. The influence of the electric field of sinusoidal waves on the nitrogen fixation on the post­ culture medium composition has a maximum at 5 V, 8 mA and 20 Hz. The rate of synthesis of specific amino acids by Azotobacter depends on the frequency and potential of the electric field applied. The concentration of each amino acid present in the post-culture medium is increased according to the electric field employed and the amino acid biosynthesis in culture medium is activated during the first days of incubation.


1981 ◽  
Vol 1 (7) ◽  
pp. 584-593 ◽  
Author(s):  
P Niederberger ◽  
G Miozzari ◽  
R Hütter

The biological role of the "general control of amino acid biosynthesis" has been investigated by analyzing growth and enzyme levels in wild-type, bradytrophic, and nonderepressing mutant strains of Saccharomyces cerevisiae. Amino acid limitation was achieved by using either bradytrophic mutations or external amino acid imbalance. In the wild-type strain noncoordinate derepression of enzymes subject to the general control has been found. Derepressing factors were in the order of 2 to 4 in bradytrophic mutant strains grown under limiting conditions and only in the order of 1.5 to 2 under the influence of external amino acid imbalance. Nonderepressing mutations led to slower growth rates under conditions of amino acid limitation, and no derepression of enzymes under the general control was observed. The amino acid pools were found to be very similar in the wild type and in nonderepressing mutant strains under all conditions tested. Our results indicate that the general control affects all branched amino acid biosynthetic pathways, namely, those of the aromatic amino acids and the aspartate family, the pathways for the basic amino acids lysine, histidine, and arginine, and also the pathways of serine and valine biosyntheses.


Sign in / Sign up

Export Citation Format

Share Document