MOV10 sequesters the RNP of influenza A virus in the cytoplasm and is antagonized by viral NS1 protein

2019 ◽  
Vol 476 (3) ◽  
pp. 467-481 ◽  
Author(s):  
Jian Li ◽  
Siqi Hu ◽  
Fengwen Xu ◽  
Shan Mei ◽  
Xiaoman Liu ◽  
...  

AbstractMOV10 has emerged as an important host antiviral factor. MOV10 not only inhibits various viruses, including human immunodeficiency virus type 1, hepatitis C virus and vesicular stomatitis virus, but also restricts the activity of retroelements long interspersed nucleotide element-1, Alu, SVA and intracisternal A particles. Here, we report that MOV10 suppresses influenza A virus infection through interacting with viral nucleoprotein (NP), sequestering viral RNP in the cytoplasm and causing the degradation of viral vRNA. The antiviral activity of MOV10 depends on the integrity of P-bodies. We also found that the antiviral activity of MOV10 is partially countered by viral NS1 protein that interferes with the interaction of MOV10 with viral NP and causes MOV10 degradation through the lysosomal pathway. Moreover, NS1-defective influenza A virus is more susceptible to MOV10 restriction. Our data not only expand the antiviral spectrum of MOV10 but also reveal the NS1 protein as the first viral antagonist of MOV10.

2021 ◽  
Author(s):  
Ee-Hong Tam ◽  
Yen-Chin Liu ◽  
Chian-Huey Woung ◽  
Helene Minyi Liu ◽  
Guan-Hong Wu ◽  
...  

The NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in RIG-I translocation to MAVS to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response. In this study, we confirmed that the 14-3-3ε protein interacts with the N-terminal domain of the NS1 protein and that the NS1 protein inhibits RIG-I-mediated IFN-β promoter activation in 14-3-3ε-overexpressing cells. In addition, our results showed that knocking down 14-3-3ε can reduce IFN-β expression elicited by influenza A virus and enhance viral replication. Furthermore, we found that threonine in the 49 th amino acid position of the NS1 protein plays a role in the interaction with 14-3-3ε. Influenza A virus expressing C-terminus-truncated NS1 with T49A mutation dramatically increases IFN-β mRNA in infected cells and causes slower replication than that of virus without the T-to-A mutation. Collectively, this study demonstrates that 14-3-3ε is involved in influenza A virus-initiated IFN-β expression and that the interaction of the NS1 protein and 14-3-3ε may be one of the mechanisms for inhibiting type I IFN activation during influenza A virus infection. IMPORTANCE Influenza A virus is an important human pathogen causing severe respiratory disease. The virus has evolved several strategies to dysregulate the innate immune response and facilitate its replication. We demonstrate that the NS1 protein of influenza A virus interacts with the cellular chaperone protein 14-3-3ε, which plays a critical role in RIG-I translocation that induces type I IFN expression, and that NS1 protein prevents RIG-I translocation to mitochondrial membrane. The interaction site for 14-3-3ε is the RNA-binding domain (RBD) of the NS1 protein. Therefore, this research elucidates a novel mechanism by which the NS1 RBD mediates IFN-β suppression to facilitate influenza A viral replication. Additionally, the findings reveal the antiviral role of 14-3-3ε during influenza A virus infection.


2001 ◽  
Vol 75 (19) ◽  
pp. 8899-8908 ◽  
Author(s):  
Boris Ferko ◽  
Jana Stasakova ◽  
Sabine Sereinig ◽  
Julia Romanova ◽  
Dietmar Katinger ◽  
...  

ABSTRACT We have generated recombinant influenza A viruses belonging to the H1N1 and H3N2 virus subtypes containing an insertion of the 137 C-terminal amino acid residues of the human immunodeficiency virus type 1 (HIV-1) Nef protein into the influenza A virus nonstructural-protein (NS1) reading frame. These viral vectors were found to be genetically stable and capable of growing efficiently in embryonated chicken eggs and tissue culture cells but did not replicate in the murine respiratory tract. Despite the hyperattenuated phenotype of influenza/NS-Nef viruses, a Nef and influenza virus (nucleoprotein)-specific CD8+-T-cell response was detected in spleens and the lymph nodes draining the respiratory tract after a single intranasal immunization of mice. Compared to the primary response, a marked enhancement of the CD8+-T-cell response was detected in the systemic and mucosal compartments, including mouse urogenital tracts, if mice were primed with the H1N1 subtype vector and subsequently boosted with the H3N2 subtype vector. In addition, Nef-specific serum IgG was detected in mice which were immunized twice with the recombinant H1N1 and then boosted with the recombinant H3N2 subtype virus. These findings may contribute to the development of alternative immunization strategies utilizing hyperattenuated live recombinant influenza virus vectors to prevent or control infectious diseases, e.g., HIV-1 infection.


2010 ◽  
Vol 107 (5) ◽  
pp. 2253-2258 ◽  
Author(s):  
Chen Zhao ◽  
Tien-Ying Hsiang ◽  
Rei-Lin Kuo ◽  
Robert M. Krug

ISG15 is an IFN-α/β–induced, ubiquitin-like protein that is conjugated to a wide array of cellular proteins through the sequential action of three conjugation enzymes that are also induced by IFN-α/β. Recent studies showed that ISG15 and/or its conjugates play an important role in protecting cells from infection by several viruses, including influenza A virus. However, the mechanism by which ISG15 modification exerts antiviral activity has not been established. Here we extend the repertoire of ISG15 targets to a viral protein by demonstrating that the NS1 protein of influenza A virus (NS1A protein), an essential, multifunctional protein, is ISG15 modified in virus-infected cells. We demonstrate that the major ISG15 acceptor site in the NS1A protein in infected cells is a critical lysine residue (K41) in the N-terminal RNA-binding domain (RBD). ISG15 modification of K41 disrupts the association of the NS1A RBD domain with importin-α, the protein that mediates nuclear import of the NS1A protein, whereas the RBD retains its double-stranded RNA-binding activity. Most significantly, we show that ISG15 modification of K41 inhibits influenza A virus replication and thus contributes to the antiviral action of IFN-β. We also show that the NS1A protein directly and specifically binds to Herc5, the major E3 ligase for ISG15 conjugation in human cells. These results establish a “loss of function” mechanism for the antiviral activity of the IFN-induced ISG15 conjugation system, namely, that it inhibits viral replication by conjugating ISG15 to a specific viral protein, thereby inhibiting its function.


1998 ◽  
Vol 9 (3) ◽  
pp. 233-243 ◽  
Author(s):  
C McGuigan ◽  
A Perry ◽  
CJ Yarnold ◽  
PW Sutton ◽  
D Lowe ◽  
...  

A number of symmetric and asymmetric 5′-phosphate esters of the potent anti-varicellazoster virus (VZV) agent 1–(β-d-arabinofuranosyl)-5-prop-1-ynyluracil (882C; netivudine) were prepared as potential lipophilic, membrane-soluble prodrugs of the bioactive phosphate forms. The compounds were prepared by the base-catalysed coupling of various phosphorochloridates with the free nucleoside analogue. Compounds were fully characterized by a range of spectroscopic and analytical methods and were studied for their inhibition of several viruses in tissue culture. All of the phosphate esters were inactive against human cytomegalovirus, herpes simplex virus type 2, VZV, human immunodeficiency virus type 1 and influenza A virus (EC50 >100 μM) except the 5′-(4–nitrophenyl phenyl) phosphate, which inhibited influenza A virus. The relative rate of esterase-mediated hydrolysis of one of the lead target structures was measured in order to rationalize the poor antiviral action, and data were collected on possible metabolites in support of this analysis. Cell-specific esterases are implicated as key determinants of the antiviral potency of prodrugs of this type.


2000 ◽  
Vol 74 (10) ◽  
pp. 4505-4511 ◽  
Author(s):  
Ligia A. Pinto ◽  
Vesna Blazevic ◽  
Bruce K. Patterson ◽  
C. Mac Trubey ◽  
Matthew J. Dolan ◽  
...  

ABSTRACT It is now recognized that, in addition to drug-mediated therapies against human immunodeficiency virus type 1 (HIV-1), the immune system can exert antiviral effects via CD8+ T-cell-generated anti-HIV factors. This study demonstrates that (i) supernatants from peripheral blood mononuclear cells (PBMC) stimulated with influenza A virus inhibit replication of CCR5- and CXCR4-tropic HIV-1 isolates prior to reverse transcription; (ii) the HIV-suppressive supernatants can be generated by CD4- or CD8-depleted PBMC; (iii) this anti-HIV activity is partially due to alpha interferon (IFN-α), but not to IFN-γ, IFN-β, the β-chemokines MIP-1α, MIP-1β, and RANTES, or interleukin-16; (iv) the anti-HIV activity is generated equally well by PBMC cultured with either infectious or UV-inactivated influenza A virus; and (v) the antiviral activity can be generated by influenza A-stimulated PBMC from HIV-infected individuals. These findings represent a novel mechanism for inhibition of HIV-1 replication that differs from the previously described CD8 anti-HIV factors (MIP-1α, MIP-1β, RANTES, and CD8 antiviral factor).


2005 ◽  
Vol 79 (19) ◽  
pp. 12132-12147 ◽  
Author(s):  
Xinzhen Yang ◽  
Svetla Kurteva ◽  
Xinping Ren ◽  
Sandra Lee ◽  
Joseph Sodroski

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs) function as a trimer, mediating virus entry by promoting the fusion of the viral and target cell membranes. HIV-1 Env trimers induce membrane fusion through a pH-independent pathway driven by the interaction between an Env trimer and its cellular receptors, CD4 and CCR5/CXCR4. We studied viruses with mixed heterotrimers of wild-type and dominant-negative Envs to determine the number (T) of Env trimers required for HIV-1 entry. To our surprise, we found that a single Env trimer is capable of supporting HIV-1 entry; i.e., T = 1. A similar approach was applied to investigate the entry stoichiometry of envelope glycoproteins from amphotropic murine leukemia virus (A-MLV), avian sarcoma/leukosis virus type A (ASLV-A), and influenza A virus. When pseudotyped on HIV-1 virions, the A-MLV and ASLV-A Envs also exhibit a T = 1 entry stoichiometry. In contrast, eight to nine influenza A virus hemagglutinin trimers function cooperatively to achieve membrane fusion and virus entry, using a pH-dependent pathway. The different entry requirements for cooperativity among Env trimers for retroviruses and influenza A virus may influence viral strategies for replication and evasion of the immune system.


2007 ◽  
Vol 51 (10) ◽  
pp. 3554-3561 ◽  
Author(s):  
Wade S. Blair ◽  
Joan Cao ◽  
Lynn Jackson ◽  
Judith Jimenez ◽  
Qinghai Peng ◽  
...  

ABSTRACT More than 106 compounds were evaluated in a human immunodeficiency virus type 1 (HIV-1) high-throughput antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (UK-201844). UK-201844 exhibited antiviral activity against HIV-1 NL4-3 in MT-2 and PM1 cells, with 50% effective concentrations of 1.3 and 2.7 μM, respectively, but did not exhibit measurable antiviral activity against the closely related HIV-1 IIIB laboratory strain. UK-201844 specifically inhibited the production of infectious virions packaged with an HIV-1 envelope (Env), but not HIV virions packaged with a heterologous Env (i.e., the vesicular stomatitis virus glycoprotein), suggesting that the compound targets HIV-1 Env late in infection. Subsequent antiviral assays using HIV-1 NL4-3/IIIB chimeric viruses showed that HIV-1 Env sequences were critical determinants of UK-201844 susceptibility. Consistent with this, in vitro resistant-virus studies revealed that amino acid substitutions in HIV-1 Env are sufficient to confer resistance to UK-201844. Western analysis of HIV Env proteins expressed in transfected cells or in isolated virions showed that UK-201844 inhibited HIV-1 gp160 processing, resulting in the production of virions with nonfunctional Env glycoproteins. Our results demonstrate that UK-201844 represents the prototype for a unique HIV-1 inhibitor class that directly or indirectly interferes with HIV-1 gp160 processing.


Sign in / Sign up

Export Citation Format

Share Document