scholarly journals Structural basis of the human Scribble–Vangl2 association in health and disease

2021 ◽  
Vol 478 (7) ◽  
pp. 1321-1332
Author(s):  
Jing Yuan How ◽  
Rebecca K. Stephens ◽  
Krystle Y.B. Lim ◽  
Patrick O. Humbert ◽  
Marc Kvansakul

Scribble is a critical cell polarity regulator that has been shown to work as either an oncogene or tumor suppressor in a context dependent manner, and also impacts cell migration, tissue architecture and immunity. Mutations in Scribble lead to neural tube defects in mice and humans, which has been attributed to a loss of interaction with the planar cell polarity regulator Vangl2. We show that the Scribble PDZ domains 1, 2 and 3 are able to interact with the C-terminal PDZ binding motif of Vangl2 and have now determined crystal structures of these Scribble PDZ domains bound to the Vangl2 peptide. Mapping of mammalian neural tube defect mutations reveal that mutations located distal to the canonical PDZ domain ligand binding groove can not only ablate binding to Vangl2 but also disrupt binding to multiple other signaling regulators. Our findings suggest that PDZ-associated neural tube defect mutations in Scribble may not simply act in a Vangl2 dependent manner but as broad-spectrum loss of function mutants by disrupting the global Scribble-mediated interaction network.

2020 ◽  
Author(s):  
Jing Yuan How ◽  
Rebecca K. Stephens ◽  
Krystle Y.B. Lim ◽  
Patrick O. Humbert ◽  
Marc Kvansakul

AbstractScribble is a critical cell polarity regulator that has been shown to work as either an oncogene or tumor suppressor in a context dependent manner, and also impacts cell migration, tissue architecture and immunity. Mutations in Scribble lead to neural tube defects in mice and humans, which has been attributed to a loss of interaction with the planar cell polarity regulator Vangl2. We show that the Scribble PDZ domains 1, 2 and 3 are able to interact with the C-terminal PDZ binding motif of Vangl2 and have now determined crystal structures of these Scribble PDZ domains bound to the Vangl2 peptide. Mapping of mammalian neural tube defect mutations reveal that mutations located distal to the canonical PDZ domain ligand binding groove can not only ablate binding to Vangl2 but also disrupt binding to multiple other signaling regulators. Our findings suggest that PDZ-associated neural tube defect mutations in Scribble may not simply act in a Vangl2 dependent manner but as broad-spectrum loss of function mutants by disrupting the global Scribble-mediated interaction network.


2018 ◽  
Author(s):  
Sofia Caria ◽  
Bryce Z Stewart ◽  
Patrick O Humbert ◽  
Marc Kvansakul

Scribble is a crucial adaptor protein that plays a pivotal role during establishment and control of cell polarity, impacting many physiological processes ranging from cell migration to immunity and organization of tissue architecture. Scribble harbors a leucine-rich repeat domain and four PDZ domains, which mediate most of Scribbles interactions with other proteins. It has become increasingly clear that posttranslational modifications substantially impact Scribble-ligand interactions, with phosphorylation being a major modulator of binding to Scribble. To better understand how Scribble PDZ domains direct cell polarity signalling and how phosphorylation impacts this process, we investigated Scribble interactions with MCC (mutated in colorectal cancer). We systematically evaluated the ability of all four individual Scribble PDZ domains to bind the PDZ-binding motif (PBM) of wild-type MCC as well as MCC phosphorylated at the -1 Ser position. We show that Scribble PDZ1 and PDZ3 are the major interactors with MCC, and that modifications to Ser at the -1 position in the MCC PBM only has a modest effect on binding to Scribble PDZ domains. We then examined the structural basis for these observations by determining the crystal structures of Scribble PDZ1 domain bound to both the wild-type MCC PBM as well as phosphorylated MCC. Our structures indicated that phospho-Ser at the -1 position in MCC is not involved in major contacts with Scribble PDZ1, and in conjunction with our affinity measurements suggest that the impact of phosphorylation at the -1 position of MCC extends beyond a simple modulation of the affinity for Scribble PDZ domains.


2021 ◽  
Author(s):  
Michael D Healy ◽  
Joanna Sacharz ◽  
Kerrie E McNally ◽  
Calum McConville ◽  
Ryan J Hall ◽  
...  

The sorting nexin SNX17 controls endosome-to-cell surface recycling of diverse transmembrane cargo proteins including integrins, the amyloid precursor protein and lipoprotein receptors. This requires association with the multi-subunit Commander trafficking complex, which depends on the C-terminus of SNX17 through unknown mechanisms. Using affinity enrichment proteomics, we find that a C-terminal peptide of SNX17 is not only sufficient for Commander interaction but also associates with members of the actin-associated PDZ and LIM domain (PDLIM) family. We show that SNX17 contains a type III PSD95/Dlg/Zo1 (PDZ) binding motif (PDZbm) that binds specifically to the PDZ domains of PDLIM family proteins but not to other PDZ domains tested. The structure of the PDLIM7 PDZ domain bound to the SNX17 C-terminus was determined by NMR spectroscopy and reveals an unconventional perpendicular peptide interaction. Mutagenesis confirms the interaction is mediated by specific electrostatic contacts and a uniquely conserved proline-containing loop sequence in the PDLIM protein family. Our results define the mechanism of SNX17-PDLIM interaction and suggest that the PDLIM proteins may play a role in regulating the activity of SNX17 in conjunction with Commander and actin-rich endosomal trafficking domains.


2019 ◽  
Vol 138 (4) ◽  
pp. 363-374 ◽  
Author(s):  
Marie Beaumont ◽  
Linda Akloul ◽  
Wilfrid Carré ◽  
Chloé Quélin ◽  
Hubert Journel ◽  
...  

Cell Research ◽  
2019 ◽  
Vol 29 (9) ◽  
pp. 776-776 ◽  
Author(s):  
Zhongzhong Chen ◽  
Yunping Lei ◽  
Yufang Zheng ◽  
Vanessa Aguiar-Pulido ◽  
M. Elizabeth Ross ◽  
...  

2006 ◽  
Vol 80 (11) ◽  
pp. 5301-5307 ◽  
Author(s):  
Michael A. James ◽  
John H. Lee ◽  
Aloysius J. Klingelhutz

ABSTRACT Infection with human papillomavirus (HPV) is a critical factor in the pathogenesis of most cervical cancers and some aerodigestive cancers. The HPV E6 oncoprotein from high-risk HPV types contributes to the immortalization and transformation of cells by multiple mechanisms, including degradation of p53, transcriptional activation of human telomerase reverse transcriptase (hTERT), and degradation of several proteins containing PDZ domains. The ability of E6 to bind PDZ domain-containing proteins is independent of p53 degradation or hTERT activation but does correlate with oncogenic potential (R. A. Watson, M. Thomas, L. Banks, and S. Roberts, J. Cell Sci. 116:4925-4934, 2003) and is essential for induction of epithelial hyperplasia in vivo (M. L. Nguyen, M. M. Nguyen, D. Lee, A. E. Griep, and P. F. Lambert, J. Virol. 77:6957-6964, 2003). In this study, we found that HPV type 16 E6 was able to activate NF-κB in airway epithelial cells through the induction of nuclear binding activity of p52-containing NF-κB complexes in a PDZ binding motif-dependent manner. Transcript accumulation for the NF-κB-responsive antiapoptotic gene encoding cIAP-2 and binding of nuclear factors to the proximal NF-κB binding site of the cIAP-2 gene promoter are induced by E6 expression. Furthermore, E6 is able to protect cells from TNF-induced apoptosis. All of these E6-dependent phenotypes are dependent on the presence of the PDZ binding motif of E6. Our results imply a role for targeting of PDZ proteins by E6 in NF-κB activation and protection from apoptosis in airway epithelial cells.


2019 ◽  
Author(s):  
Neetu Sain ◽  
Debasisa Mohanty

AbstractPDZ domains are important peptide recognition modules which usually recognize short C-terminal stretches of their interaction partners, but certain PDZ domains can also recognize internal peptides in the interacting proteins. Due to the scarcity of data on internal peptide recognition and lack of understanding of the mechanistic details of internal peptide recognition, identification of PDZ domains capable of recognizing internal peptides has been a difficult task. Since Par-6 PDZ domain can recognize both C-terminal and internal peptides, we have carried out multiple explicit solvent MD simulations of 1 μs duration on free and peptide bound Par-6 PDZ to decipher mechanistic details of internal peptide recognition. These simulations have been analyzed to identify residues which play a crucial role in internal peptide recognition by PDZ domains. Based on the conservation profile of the identified residues, we have predicted 47 human PDZ domains to be capable of recognizing internal peptides in human. We have also investigated how binding of CDC42 to the CRIB domain adjacent to the Par6 PDZ allosterically modulate the peptide recognition by Par6 PDZ. Our MD simulations on CRIB-Par6_PDZ di-domain in isolation as well as in complex with CDC42, indicate that in absence of CDC42 the adjacent CRIB domain induces open loop conformation of PDZ facilitating internal peptide recognition. On the other hand, upon binding of CDC42 to the CRIB domain, Par6 PDZ adopts closed loop conformation required for recognition of C-terminus peptides. These results provide atomistic details of how binding of interaction partners onto adjacent domains can allosterically regulate substrate binding to PDZ domains. In summary, MD simulations provide novel insights into the modulation of substrate recognition preference of PDZ by specific peptides, adjacent domains and binding of interaction partners at allosteric sites.


2021 ◽  
Author(s):  
Nestor Kamdem ◽  
Yvette Roske ◽  
Dmytro Kovalskyy ◽  
Maxim O. Platonov ◽  
Oleksii Balinskyi ◽  
...  

Abstract. Dishevelled (Dvl) proteins are important regulators of the Wnt signalling pathway, interacting through their PDZ domains with the Wnt receptor Frizzled. Blocking the Dvl PDZ/Frizzled interaction represents a potential approach for cancer treatment, which stimulated the identification of small molecule inhibitors, among them the anti-inflammatory drug Sulindac and Ky-02327. Aiming to develop tighter binding compounds without side effects, we investigated structure-activity relationships of sulfonamides. X-ray crystallography showed high complementarity of anthranilic acid derivatives in the GLGF loop cavity and space for ligand growth towards the PDZ surface. Our best binding compound inhibits Wnt signalling in a dose-dependent manner as demonstrated by TOP-GFP assays (IC50 ~50 µM), and Western blotting of β-catenin levels. Real-time PCR showed reduction in the expression of Wnt-specific genes. Our compound interacted with Dvl-1 PDZ (Kd = 2.4 µM) stronger than Ky-02327 and may be developed into a lead compound interfering with the Wnt pathway.


2011 ◽  
Vol 439 (2) ◽  
pp. 195-205 ◽  
Author(s):  
Vanitha Krishna Subbaiah ◽  
Christian Kranjec ◽  
Miranda Thomas ◽  
Lawrence Banks

Over 250 PDZ (PSD95/Dlg/ZO-1) domain-containing proteins have been described in the human proteome. As many of these possess multiple PDZ domains, the potential combinations of associations with proteins that possess PBMs (PDZ-binding motifs) are vast. However, PDZ domain recognition is a highly specific process, and much less promiscuous than originally thought. Furthermore, a large number of PDZ domain-containing proteins have been linked directly to the control of processes whose loss, or inappropriate activation, contribute to the development of human malignancies. These regulate processes as diverse as cytoskeletal organization, cell polarity, cell proliferation and many signal transduction pathways. In the present review, we discuss how PBM–PDZ recognition and imbalances therein can perturb cellular homoeostasis and ultimately contribute to malignant progression.


2007 ◽  
Vol 82 (5) ◽  
pp. 2493-2500 ◽  
Author(s):  
William C. Spanos ◽  
Andrew Hoover ◽  
George F. Harris ◽  
Shu Wu ◽  
Guinevere L. Strand ◽  
...  

ABSTRACT The human papillomavirus (HPV) oncogene E6 has been shown to perform multiple functions (p53 degradation, telomerase activation, etc.) that play a role in oncogenic transformation. Beyond known E6 functions, an undefined mechanism that allows cellular invasion requires the E6 PDZ binding motif (PDZBM). Here, we show that HPV type 16 (HPV16) E6 interacts with and induces loss of a protein tyrosine phosphatase (PTPN13) in a PDZBM-dependent manner. PTPN13 loss induced either by the presence of E6 or by a short hairpin RNA strategy allows for anchorage-independent growth (AIG) and synergy with a known oncogene, Rasv12, resulting in invasive growth in vivo. Restoring PTPN13 expression reverses AIG in cells lacking PTPN13. A genomic analysis of colorectal carcinoma has identified an association between PTPN13 loss-of-function mutations and aberrant Ras signaling. Our findings support this correlation and provide methods for further evaluation of the mechanisms by which PTPN13 loss/Ras expression leads to invasive growth, the results of which will be important for treatment of HPV-related and non-HPV cancer.


Sign in / Sign up

Export Citation Format

Share Document