loop conformation
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 28)

H-INDEX

22
(FIVE YEARS 3)

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1565
Author(s):  
Li Zhang ◽  
Meiruo Liu ◽  
Luyao Bao ◽  
Kristina I. Boström ◽  
Yucheng Yao ◽  
...  

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a highly conserved enzyme involved in the ubiquitous process of glycolysis and presents a loop (residues 208–215 of Escherichia coli GAPDH) in two alternative conformations (I and II). It is uncertain what triggers this loop rearrangement, as well as which is the precise site from which phosphate attacks the thioacyl intermediate precursor of 1,3-bisphosphoglycerate (BPG). To clarify these uncertainties, we determined the crystal structures of complexes of wild-type GAPDH (WT) with NAD and phosphate or G3P, and of essentially inactive GAPDH mutants (C150S, H177A), trapping crystal structures for the thioacyl intermediate or for ternary complexes with NAD and either phosphate, BPG, or G3P. Analysis of these structures reported here lead us to propose that phosphate is located in the “new Pi site” attacks the thioester bond of the thioacyl intermediate to generate 1,3-bisphosphoglyceric acid (BPG). In the structure of the thioacyl intermediate, the mobile loop is in conformation II in subunits O, P, and R, while both conformations coexist in subunit Q. Moreover, only the Q subunit hosts bound NADH. In the R subunit, only the pyrophosphate part of NADH is well defined, and NADH is totally absent from the O and P subunits. Thus, the change in loop conformation appears to occur after NADH is produced, before NADH is released. In addition, two new D-glyceraldehyde-3-phosphate (G3P) binding forms are observed in WT.NAD.G3P and C150A+H177A.NAD.G3P. In summary, this paper improves our understanding of the GAPDH catalytic mechanism, particularly regarding BPG formation.


2021 ◽  
Author(s):  
Pawel Leznicki ◽  
Hayden O. Schneider ◽  
Jada V. Harvey ◽  
Wei Q. Shi ◽  
Stephen High

Membrane proteins destined for lipid droplets (LDs), a major intracellular storage site for neutral lipids, are inserted into the endoplasmic reticulum (ER) and then trafficked to LDs where they reside in a hairpin loop conformation. Here, we show that LD membrane proteins can be delivered to the ER either co- or post-translationally and that their membrane-embedded region specifies pathway selection. The co-translational route for LD membrane protein biogenesis is insensitive to a small molecule inhibitor of the Sec61 translocon, Ipomoeassin F, and instead relies on the ER membrane protein complex (EMC) for membrane insertion. This route may even result in a transient exposure of the short N-termini of some LD membrane proteins to the ER lumen, followed by putative topological rearrangements that would enable their transmembrane segment to form a hairpin loop and N-termini to face the cytosol. Our study reveals an unexpected complexity to LD membrane protein biogenesis and identifies a role for the EMC during their co-translational insertion into the ER.


2021 ◽  
Author(s):  
Pawel Leznicki ◽  
Wei Q Shi ◽  
Stephen High

Membrane proteins destined for lipid droplets (LDs), a major intracellular storage site for neutral lipids, are inserted into the endoplasmic reticulum (ER) and then trafficked to LDs where they reside in a hairpin loop conformation. Here, we show that LD membrane proteins can be delivered to the ER either co- or post-translationally and that their membrane-embedded region specifies pathway selection. The co-translational route for LD membrane protein biogenesis is insensitive to a small molecule inhibitor of the Sec61 translocon, Ipomoeassin F, and instead relies on the ER membrane protein complex (EMC) for membrane insertion. Strikingly, this route can also result in a transient exposure of the short N-termini of LD membrane proteins to the ER lumen, followed by topological rearrangements that enable their transmembrane segment to form a hairpin loop and N-termini to face the cytosol. Our study reveals an unexpected complexity to LD membrane protein biogenesis and identifies a role for the EMC during their co-translational insertion into the ER.


2021 ◽  
Vol 118 (22) ◽  
pp. e2101632118
Author(s):  
Sunzhenhe Fang ◽  
Xiaowei Huang ◽  
Xue Zhang ◽  
Minhua Zhang ◽  
Yahui Hao ◽  
...  

SbtA is a high-affinity, sodium-dependent bicarbonate transporter found in the cyanobacterial CO2-concentrating mechanism (CCM). SbtA forms a complex with SbtB, while SbtB allosterically regulates the transport activity of SbtA by binding with adenyl nucleotides. The underlying mechanism of transport and regulation of SbtA is largely unknown. In this study, we report the three-dimensional structures of the cyanobacterial Synechocystis sp. PCC 6803 SbtA–SbtB complex in both the presence and absence of HCO3− and/or AMP at 2.7 Å and 3.2 Å resolution. An analysis of the inward-facing state of the SbtA structure reveals the HCO3−/Na+ binding site, providing evidence for the functional unit as a trimer. A structural comparison found that SbtA adopts an elevator mechanism for bicarbonate transport. A structure-based analysis revealed that the allosteric inhibition of SbtA by SbtB occurs mainly through the T-loop of SbtB, which binds to both the core domain and the scaffold domain of SbtA and locks it in an inward-facing state. T-loop conformation is stabilized by the AMP molecules binding at the SbtB trimer interfaces and may be adjusted by other adenyl nucleotides. The unique regulatory mechanism of SbtA by SbtB makes it important to study inorganic carbon uptake systems in CCM, which can be used to modify photosynthesis in crops.


2021 ◽  
Vol 7 (18) ◽  
pp. eabf1002
Author(s):  
Aileen J. Lam ◽  
Lu Rao ◽  
Yuzu Anazawa ◽  
Kyoko Okada ◽  
Kyoko Chiba ◽  
...  

KIF1A is a critical cargo transport motor within neurons. More than 100 known mutations result in KIF1A-associated neurological disorder (KAND), a degenerative condition for which there is no cure. A missense mutation, P305L, was identified in children diagnosed with KAND, but the molecular basis for the disease is unknown. We find that this conserved residue is part of an unusual 310 helix immediately adjacent to the family-specific K-loop, which facilitates a high microtubule-association rate. We find that the mutation negatively affects several biophysical parameters of the motor. However, the microtubule-association rate of the motor is most markedly affected, revealing that the presence of an intact K-loop is not sufficient for its function. We hypothesize that the 310 helix facilitates a specific K-loop conformation that is critical for its function. We find that the function of this proline is conserved in kinesin-1, revealing a fundamental principle of the kinesin motor mechanism.


2021 ◽  
Vol 22 (6) ◽  
pp. 3219
Author(s):  
Fanghua Wang ◽  
Siyu Liu ◽  
Xuejing Mao ◽  
Ruiguo Cui ◽  
Bo Yang ◽  
...  

Phospholipases D (PLDs) play important roles in different organisms and in vitro phospholipid modifications, which attract strong interests for investigation. However, the lack of PLD structural information has seriously hampered both the understanding of their structure–function relationships and the structure-based bioengineering of this enzyme. Herein, we presented the crystal structure of a PLD from the plant-associated bacteria Serratia plymuthica strain AS9 (SpPLD) at a resolution of 1.79 Å. Two classical HxKxxxxD (HKD) motifs were found in SpPLD and have shown high structural consistence with several PLDs in the same family. While comparing the structure of SpPLD with the previous resolved PLDs from the same family, several unique conformations on the C-terminus of the HKD motif were demonstrated to participate in the arrangement of the catalytic pocket of SpPLD. In SpPLD, an extented loop conformation between β9 and α9 (aa228–246) was found. Moreover, electrostatic surface potential showed that this loop region in SpPLD was positively charged while the corresponding loops in the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9) were neutral. The shortened loop between α10 and α11 (aa272–275) made the SpPLD unable to form the gate-like structure which existed specically in the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9) and functioned to stabilize the substrates. In contrast, the shortened loop conformation at this corresponding segment was more alike to several nucleases (Nuc, Zuc, mZuc, NucT) within the same family. Moreover, the loop composition between β11 and β12 was also different from the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9), which formed the entrance of the catalytic pocket and were closely related to substrate recognition. So far, SpPLD was the only structurally characterized PLD enzyme from Serratia. The structural information derived here not only helps for the understanding of the biological function of this enzyme in plant protection, but also helps for the understanding of the rational design of the mutant, with potential application in phospholipid modification.


2021 ◽  
Vol 64 (6) ◽  
pp. 3048-3058
Author(s):  
Tobias F. Fischer ◽  
Clara T. Schoeder ◽  
Tristan Zellmann ◽  
Jan Stichel ◽  
Jens Meiler ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Marc Garcia-Borràs ◽  
S. B. Jennifer Kan ◽  
Russell D. Lewis ◽  
Allison Tang ◽  
Gonzalo Jiménez-Osés ◽  
...  

<div><div><div><p>A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity towards C–Si bond formation over competing C–N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron-carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein’s chemoselectivity from preferred silylation to preferred amination of a substrate containing both N–H and Si–H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world.</p></div></div></div>


2021 ◽  
Author(s):  
Marc Garcia-Borràs ◽  
S. B. Jennifer Kan ◽  
Russell D. Lewis ◽  
Allison Tang ◽  
Gonzalo Jiménez-Osés ◽  
...  

<div><div><div><p>A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity towards C–Si bond formation over competing C–N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron-carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein’s chemoselectivity from preferred silylation to preferred amination of a substrate containing both N–H and Si–H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document