scholarly journals Conformational changes during the reaction cycle of Plasma Membrane Ca2+-ATPase in the autoinhibited and activated states

2021 ◽  
Author(s):  
Nicolás A Saffioti ◽  
Marilina de Sautu ◽  
Ana Sol Riesco ◽  
Mariela Soledad Ferreira-Gomes ◽  
Juan Pablo F.C. Rossi ◽  
...  

Plasma membrane Ca2+-ATPase (PMCA) transports Ca2+ by a reaction cycle including phosphorylated intermediates. Calmodulin binding to the C-terminal tail disrupts autoinhibitory interactions, activating the pump. To assess the conformational changes during the reaction cycle, we studied the structure of different PMCA states using a fluorescent probe, hydrophobic photolabeling, controlled proteolysis and Ca2+-ATPase activity.  Our results show that calmodulin binds to E2P-like states, and during dephosphorylation, the hydrophobicity in the nucleotide-binding pocket decreases and the Ca2+ binding site becomes inaccessible to the extracellular medium. Autoinhibitory interactions are disrupted in E1Ca and in the E2P ground state whereas they are stabilized in the E2∙Pi product state. Finally, we propose a model that describes the conformational changes during the Ca2+ transport of PMCA.

1985 ◽  
Vol 228 (2) ◽  
pp. 479-485 ◽  
Author(s):  
K Gietzen ◽  
J Kolandt

Antibodies against purified Ca2+-transport ATPase from human erythrocytes were raised in rabbits. Immunodiffusion experiments revealed that precipitating antibodies had been developed. The immunoglobulin fraction inhibited solely the calmodulin-dependent fraction of erythrocyte Ca2+-transport ATPase activity, whereas the basal (in the absence of added calmodulin) activity of the enzyme was not significantly affected by the antibodies. The antibodies produced similar doseresponse curves for the calmodulin- and the oleic acid-stimulated enzyme. However, the immunoglobulin fraction was considerably less effective in inhibiting Ca2+-transport ATPase activated by limited proteolysis. The results obtained with our antibodies are compatible with the interpretation that at least one subpopulation of the antibodies attacks the enzyme at or close to the calmodulin-binding site of the ATPase. The antibodies also inhibited the calmodulin-regulated Ca2+-transport ATPase from pig smooth-muscle plasma membrane, though with lower potency. However, the immunoglobulin fraction failed to suppress pig cardiac sarcoplasmicreticulum Ca2+-transport ATPase activity in the concentration range investigated. In addition, the activity of phosphodiesterase from rat brain, another enzyme modulated by calmodulin, was not at all affected by the immunoglobulin fraction.


2019 ◽  
Vol 20 (6) ◽  
pp. 1444 ◽  
Author(s):  
Soria Iatmanen-Harbi ◽  
lucile Senicourt ◽  
Vassilios Papadopoulos ◽  
Olivier Lequin ◽  
Jean-Jacques Lacapere

The optimization of translocator protein (TSPO) ligands for Positron Emission Tomography as well as for the modulation of neurosteroids is a critical necessity for the development of TSPO-based diagnostics and therapeutics of neuropsychiatrics and neurodegenerative disorders. Structural hints on the interaction site and ligand binding mechanism are essential for the development of efficient TSPO ligands. Recently published atomic structures of recombinant mammalian and bacterial TSPO1, bound with either the high-affinity drug ligand PK 11195 or protoporphyrin IX, have revealed the membrane protein topology and the ligand binding pocket. The ligand is surrounded by amino acids from the five transmembrane helices as well as the cytosolic loops. However, the precise mechanism of ligand binding remains unknown. Previous biochemical studies had suggested that ligand selectivity and binding was governed by these loops. We performed site-directed mutagenesis to further test this hypothesis and measured the binding affinities. We show that aromatic residues (Y34 and F100) from the cytosolic loops contribute to PK 11195 access to its binding site. Limited proteolytic digestion, circular dichroism and solution two-dimensional (2-D) NMR using selective amino acid labelling provide information on the intramolecular flexibility and conformational changes in the TSPO structure upon PK 11195 binding. We also discuss the differences in the PK 11195 binding affinities and the primary structure between TSPO (TSPO1) and its paralogous gene product TSPO2.


2006 ◽  
Vol 281 (17) ◽  
pp. 11693-11701 ◽  
Author(s):  
Catherine M. Sutherland ◽  
Paul A. B. Moretti ◽  
Niamh M. Hewitt ◽  
Christopher J. Bagley ◽  
Mathew A. Vadas ◽  
...  

Complexes of nucleotides, peptides and arom atic hapten-like compounds with immunoglobulin fragments were studied by X-ray analysis. Alter tri- or hexanucleotides of deoxythymidylate were diffused into triclinic crystals of a Fab (BV04- 01) with specificity for single-stranded DNA, extensive changes were detected throughout the structure of the protein. The Fab co-crystallized with a tri- or pentanucleotide in a different space group (monoclinic), an observation sometimes correlated with alterations in the structure of the ‘native’ protein. Structural analyses of the co-crystals are in progress for direct comparisons with the unliganded Fab. In crystals of a human (Meg) Bence-Jones dimer, synthetic opioid peptides, chemotactic peptides or dinitrophenyl (DNP) derivatives could be diffused into a large conical binding cavity. The conformations of both the ligand and the protein were usually altered during the binding process. At the base of the cavity tyrosine residues could be displaced like trap-doors to permit entry of some opioid peptides and DNP compounds into a deep binding pocket. In co-crystals of the dimer and bis(DNP)lysine, two ligand molecules were bound in tandem, one in the main cavity and the second in the deep pocket. One ligand adopted an extended conformation, with the ε-DNP ring near the floor of the main cavity and the α-DNP group in solvent outside the binding site. There were no significant conformational changes in the protein. In contrast, the second ligand was very compact, with both DNP rings immersed in the deep pocket, and the binding site was expanded to accommodate the oversized ligand. Peptides designed to be specific for the main cavity were incrementally constructed from minimal binding units by M. Geysen, G. Trippick, S. Rodda and their colleagues. A pentapeptide optimized for binding by this method was diffused into a crystal of the dimer and found by Fourier difference analysis to lodge exclusively in the main cavity as predicted. Binding regions in the BV04-01 Fab and the Meg dimer were markedly different in size and shape. The Fab had a groove-type site, in which a layer of sidechains acted like a false floor over regions analogous to the cavity and deep pocket of the Bence-Jones dimer.


1985 ◽  
Vol 231 (3) ◽  
pp. 737-742 ◽  
Author(s):  
J Verbist ◽  
F Wuytack ◽  
L Raeymaekers ◽  
R Casteels

Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.


2007 ◽  
Vol 402 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Brian J. Holleran ◽  
Marie-Eve Beaulieu ◽  
Christophe D. Proulx ◽  
Pierre Lavigne ◽  
Emanuel Escher ◽  
...  

The mechanism by which GPCRs (G-protein-coupled receptors) undergo activation is believed to involve conformational changes following agonist binding. We have used photoaffinity labelling to identify domains within GPCRs that make contact with various photoreactive ligands in order to better understand the activation mechanism. Here, a series of four agonist {[Bpa1]U-II (Bpa is p-benzoyl-L-phenylalanine), [Bpa2]U-II, [Bpa3]U-II and [Bpa4]U-II} and three partial agonist {[Bpa1Pen5D-Trp7Orn8]U-II (Pen is penicillamine), [Bpa2Pen5D-Trp7Orn8]U-II and [Pen5Bpa6D-Trp7Orn8]U-II} photoreactive urotensin II (U-II) analogues were used to identify ligand-binding sites on the UT receptor (U-II receptor). All peptides bound the UT receptor expressed in COS-7 cells with high affinity (Kd of 0.3–17.7 nM). Proteolytic mapping and mutational analysis led to the identification of Met288 of the third extracellular loop of the UT receptor as a binding site for all four agonist peptides. Both partial agonists containing the photoreactive group in positions 1 and 2 also cross-linked to Met288. We found that photolabelling with the partial agonist containing the photoreactive group in position 6 led to the detection of transmembrane domain 5 as a binding site for that ligand. Interestingly, this differs from Met184/Met185 of the fourth transmembrane domain that had been identified previously as a contact site for the full agonist [Bpa6]U-II. These results enable us to better map the binding pocket of the UT receptor. Moreover, the data also suggest that, although structurally related agonists or partial agonists may dock in the same general binding pocket, conformational changes induced by various states of activation may result in slight differences in spatial proximity within the cyclic portion of U-II analogues.


1992 ◽  
Vol 1 (12) ◽  
pp. 1613-1621 ◽  
Author(s):  
Rocco Falchetto ◽  
Thomas Vorherr ◽  
Ernesto Carafoli

2019 ◽  
Vol 26 (7) ◽  
pp. 1062-1078 ◽  
Author(s):  
Maite Rocío Arana ◽  
Guillermo Alejandro Altenberg

Background:Proteins that belong to the ATP-binding cassette superfamily include transporters that mediate the efflux of substrates from cells. Among these exporters, P-glycoprotein and MRP1 are involved in cancer multidrug resistance, protection from endo and xenobiotics, determination of drug pharmacokinetics, and the pathophysiology of a variety of disorders. Objective:To review the information available on ATP-binding cassette exporters, with a focus on Pglycoprotein, MRP1 and related proteins. We describe tissue localization and function of these transporters in health and disease, and discuss the mechanisms of substrate transport. We also correlate recent structural information with the function of the exporters, and discuss details of their molecular mechanism with a focus on the nucleotide-binding domains. Methods: Evaluation of selected publications on the structure and function of ATP-binding cassette proteins. Conclusions:Conformational changes on the nucleotide-binding domains side of the exporters switch the accessibility of the substrate-binding pocket between the inside and outside, which is coupled to substrate efflux. However, there is no agreement on the magnitude and nature of the changes at the nucleotide- binding domains side that drive the alternate-accessibility. Comparison of the structures of Pglycoprotein and MRP1 helps explain differences in substrate selectivity and the bases for polyspecificity. P-glycoprotein substrates are hydrophobic and/or weak bases, and polyspecificity is explained by a flexible hydrophobic multi-binding site that has a few acidic patches. MRP1 substrates are mostly organic acids, and its polyspecificity is due to a single bipartite binding site that is flexible and displays positive charge.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Jérémie Prévost ◽  
William D. Tolbert ◽  
Halima Medjahed ◽  
Rebekah T. Sherburn ◽  
Navid Madani ◽  
...  

ABSTRACT The HIV-1 envelope glycoproteins (Env) undergo conformational changes upon interaction of the gp120 exterior glycoprotein with the CD4 receptor. The gp120 inner domain topological layers facilitate the transition of Env to the CD4-bound conformation. CD4 engages gp120 by introducing its phenylalanine 43 (Phe43) in a cavity (“the Phe43 cavity”) located at the interface between the inner and outer gp120 domains. Small CD4-mimetic compounds (CD4mc) can bind within the Phe43 cavity and trigger conformational changes similar to those induced by CD4. Crystal structures of CD4mc in complex with a modified CRF01_AE gp120 core revealed the importance of these gp120 inner domain layers in stabilizing the Phe43 cavity and shaping the CD4 binding site. Our studies reveal a complex interplay between the gp120 inner domain and the Phe43 cavity and generate useful information for the development of more-potent CD4mc. IMPORTANCE The Phe43 cavity of HIV-1 envelope glycoproteins (Env) is an attractive druggable target. New promising compounds, including small CD4 mimetics (CD4mc), were shown to insert deeply into this cavity. Here, we identify a new network of residues that helps to shape this highly conserved CD4 binding pocket and characterize the structural determinants responsible for Env sensitivity to small CD4 mimetics.


Sign in / Sign up

Export Citation Format

Share Document